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Why Gamma-Rays?




How are solar gamma-rays produced?



Gamma Rays - How?
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First Observation of Time Variation in the Solar-Disk Gamma-Ray Flux with Fermi

Kenny C. Y. Ng,»2:* John F. Beacom,»%:3: T Annika H. G. Peter,:%3:% and Carsten Rott* 3

' Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, OH 43210
* Department of Physics, Ohio State University, Columbus, OH 43210
3 Department of Astronomy, Ohio State University, Columbus, OH 43210

* Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea
(Dated: 7 November 2015)

The solar disk is a bright gamma-ray source. Surprisingly, its flux is about one order of magnitude
higher than predicted. As a first step toward understanding the physical origin of this discrepancy,
we perform a new analysis in 1-100 GeV using 6 years of public Fermi-LAT data. Compared to
the previous analysis by the Fermi Collaboration, who analyzed 1.5 years of data and detected the
solar disk in 0.1-10 GeV, we find two new and significant results: 1. In the 1-10 GeV flux (detected
at > bo), we discover a significant time variation that anticorrelates with solar activity. 2. We
detect gamma rays in 10-30 GeV at > 50, and in 30-100 GeV at > 2¢. The time variation strongly
indicates that solar-disk gamma rays are induced by cosmic rays and that solar atmospheric magnetic
fields play an important role. Our results provide essential clues for understanding the underlying
gamma-ray production processes, which may allow new probes of solar atmospheric magnetic fields,
cosmic rays in the solar system, and possible new physics. Finally, we show that the Sun is a
promising new target for ground-based TeV gamma-ray telescopes such as HAWC and LHAASO.

PACS numbers: 95.85.Pw, 96.50.5-; 13.85.Qk, 96.50.Vg

I. INTRODUCTION angular size of the Sun (~ 0.5°); we denote it (plus any
potential non-cosmic-ray contribution) as the solar-disk

The Sun is well studied and understood with a broad  component.

set of messengers at diflerent energies. For example, the Theoretical estimation of both components requires
prlcfﬂ Photon f}ﬂd hiIeV ﬂeUtrH_l(} fPeCtl"f? COnﬁTm a f_le- taking into account the effects of solar magnetic activity.

e |
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Unexpected Dip in the Solar Gamma-Ray Spectrum

Qing-Wen Tang,"? * Kenny C. Y. Ng,* T Tim Linden,"*
Bei Zhou,''*>% John F. Beacom, %% Y and Annika H. G. Peter’>%5: **

" Center for Cosmology and AstroParticle Physics (CCAPP),
Ohio State University, Columbus, Ohio 43210, USA
* Department of Physics, Nanchang University, Nanchang 330031, China

> Department of Particle Physics and Astrophysics,

Weizmann Institute of Science, Rehovot 76100, Israel

1 Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
° Department of Astronomy, Ohio State Universily, Columbus, Ohio 43210, USA
(Dated: 9th May 2018)

The solar disk is a bright source of multi-GeV gamma rays, due to the interactions of hadronic cosmic
rays with the solar atmosphere. However, the underlying production mechanism is not understood,
except that its efficiency must be greatly enhanced by magnetic fields that redirect some cosmic
rays from ingoing to outgoing before they interact. To elucidate the nature of this emission, we
perform a new analysis of solar atmospheric gamma rays with 9 years of Fermi-LAT data, which
spans nearly the full 11-year solar cycle. We detect significant gamma-ray emission from the solar
disk from 1GeV up to > 200 GeV. The overall gamma-ray spectrum is much harder (~ E;?*7)
than the cosmic-ray spectrum (~ EZ>"). We find a clear anticorrelation between the solar cycle
phase and the gamma-ray flux between 1-10 GeV. Surprisingly, we observe a spectral dip between
~30-50 GeV in an otherwise power-law spectrum. This was not predicted, is not understood, and
may provide crucial clues to the gamma-ray emission mechanism. The flux above 100 GeV, which

is brightest during the solar minimum, poses exciting opportunities for HAWC, LHAASQO, IceCube,
and KM3NeT.

I. INTRODUCTION particles accelerated during energetic solar events, such
as solar flares and coronal mass ejections [11], can pro-



»-ph.HE| 14 Mar 2018

Evidence for a New Component of High-Energy Solar Gamma-Ray Production

Tim Linden," * Bei Zhou,"? T John F. Beacom, %3 * Annika H. G. Peter,"%*> 3 Kenny C. Y. Ng,* ¥ and Qing-Wen Tang!->> **

! Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, Columbus, OH 43210
’Department of Physics, The Ohio State University, Columbus, OH 43210
Department of Astronomy, The Ohio State University, Columbus, OH 43210
4Departmem‘ of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel
Department of Physics, Nanchang University, Nanchang 330031, China

The observed multi-GeV gamma-ray emission from the solar disk — sourced by hadronic cosmic rays inter-
acting with gas, and affected by complex magnetic fields — is not understood. Utilizing an improved analysis
of the Fermi-LAT data that includes the first resolved imaging of the disk, we find strong evidence that this
emission is produced by two separate mechanisms. Between 2010-2017 (the rise to and fall from solar maxi-
mum), the gamma-ray emission is dominated by a polar component. Between 2008—2009 (solar minimum) this
component remains present, but the total emission is instead dominated by a new equatorial component with a
brighter flux and harder spectrum. Most strikingly, although 6 gamma rays above 100 GeV are observed during
the 1.4 years of solar minimum, none are observed during the next 7.8 years. These features, along with a 30-50
GeV spectral dip which will be discussed in a companion paper, were not anticipated by theory. To understand
the underlying physics, Fermi and HAWC observations of the imminent Cycle 25 solar minimum are crucial.

The Sun is a bright source of multi-GeV ~y-rays, with emis-
sion observed both from its halo — due to cosmic-rays elec-
trons interacting with solar photons — and its disk — due to
hadronic cosmic rays (mostly protons) interacting with solar
gas. (Emission from solar particle acceleration is only bright
during flares and has not been observed above 4 GeV [1-8].)
Although the halo emission [9] agrees with theory [10-12],
the disk emission does not, and hence 1s our focus.

T Teat1l vrarcrantlsy tha mnact avtancivva analsreie Af ocnlar Aol

1s detected up to ~30 GeV. Most significantly, we discover
a spectral dip between 30-50 GeV. This dip 1s unexpected
and its origin 1s unknown. Here we extend the analyses of
Refs. [13, 17] by going to higher energies, studying the time
variation in a new way, and performing the first analysis of
flux variations across the resolved solar disk. In the follow-
ing, we detail our methodology, highlight key discoveries, and
discuss their possible theoretical implications.

g B P R AR R [N Ag B | ) B P -~ 4L~ A.1.
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First Observations of Solar Disk Gamma Rays over a Full Solar Cycle

Tim Linden," % * John F. Beacom,>*% 1 Annika H. G. Peter, %% 1
Benjamin J. Buckman,*>' % Bei Zhou,”*>' Y and Guanying Zhu?* > **

LStockholm University and The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, 10691 Stockholm, Sweden
*Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, Ohio 43210, USA
*Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
‘Department of Astronomy, Ohio State University, Columbus, Ohio 43210, USA
>Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA

The solar disk is among the brightest ~y-ray sources in the sky. It is also among the most mysterious. No
existing model fully explains the luminosity, spectrum, time variability, and morphology of its emission. We
perform the first analysis of solar-disk ~y-rays over a full 11-year solar cycle, utilizing a powerful new method to
differentiate solar signals from astrophysical backgrounds. We produce: (1) a robustly measured spectrum from
100 MeV to 100 GeV, reaching a precision of several percent in the 1-10 GeV range, (i1) new results on the
anti-correlation between solar activity and «y-ray emission, (i11) strong constraints on short-timescale variability,
ranging from hours to years, and (iv) new detections of the equatorial and polar morphologies of high-energy
~-rays. Intriguingly, we find no significant energy dependence in the time variability of solar-disk emission,
indicating that strong magnetic-field effects close to the solar surface, rather than modulation throughout the
heliosphere, must primarily control the flux and morphology of solar-disk emission.

I. INTRODUCTION

The Sun is a special astrophysical source. Its close proxim-
ity allows detailed studies critical to understanding other stars.
The ability to spatially resolve solar emission is especially im-
portant for probing high-energy, nonthermal processes, which
can be hiehlv local. These processes reveal chareed-particle

The Sun’s ~y-ray emission is dramatically affected by its
magnetic fields. Without magnetic fields, the disk emission
would have two components. At energies above ~1 GeV, the
v-ray direction increasingly follows that of the parent cosmic
ray. Accordingly, only cosmic rays that graze the solar surface
can interact and have the y-rays escape [14]. The correspond-
ing emission from the solar limb 1s too faint to be observed
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Fermi Solar Panel

Vay 30, 2018

Fermi Status Update

Both instruments aboard NASA’s Fermi Gamma-ray Space Telescope have resumed science observations. The spacecraft itself is functioning well despite the
March 16 failure of a mechanism that drives one solar panel, an event that triggered an automatic “safe hold” that powered down Fermi’s instruments.

The Gamma-ray Burst Monitor (GBM) was powered back up ocn March 28 and has resumed normal science operations, detecting more than two dozen
gamma-ray bursts since. The GBM sees the entire sky not blocked by Earth.

Fermi’s primary instrument, the Large Area Telescope (LAT), was powered up on April 2 and allowed to reach its nominal temperature before observations
resumed on April 8.

Currently, the observatory is using a slightly different strategy for viewing the sky. This strategy is still being optimized while the engineering team continues to
study the cause of the anomalous solar panel behavior.

Since its return to duty, the LAT has detected numerous flares from active galaxies powered by supermassive black holes and saw two novas — stellar
explosions occurring on white dwarf stars in our own galaxy.

“The gamma-ray sky has been quite active lately, so we're glad the LAT is back on the job,” said Fermi Project Scientist Julie McEnery at NASA’s Goddard
Space Flight Center in Greenbelt, Maryland.

Media Contact: Felicia Chou, NASA Headquarters






TEV OBSERVATIONS OF THE SUN
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The TeV Sun Rises: Discovery of Gamma rays from the Quiescent Sun with HAWC
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Difficulty in Hadron Separation Makes Analysis Much More Difficult for HAWC
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Difficulty in Hadron Separation Makes Analysis Much More Difficult for HAWC
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Difficulty in Hadron Separation Makes Analysis Much More Difficult for HAWC

Shadow-subtracted Data
Shadow Best Fit
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HAWC Verifies Variability over Solar Cycle

+ Shadow-subtracted Data

Solar Maximum

Flux only robustly detected during solar
minimum.

Fractional Deviation [10~7]

Similar exposure in both datasets.
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So basically everything is wrong....

How do we model this?



Gamma-Ray Emission much brighter than expected

(I)G)(E’Y) — WR%)(I)CR(ECR)C(E’W ECR)fsurfturnfint
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Gamma-Ray Spectrum Harder than Expected
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Gamma-Ray Emission Not Uniform
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Two Different Emission Mechanisms?
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Conclusions

We see, but we don’t understand.

Help?

Solar gamma-rays provide a new handle into fundamental
questions in solar magnetohydrodynamics.

Huge Potential For Cross-Correlations with other
wavelengths



