LMXB and Pulsar Constraints on MSP Interpretations of the GCE

Tim Linden

What are the physical interpretations of the nuclear and boxy bulge?

A Physical Interpretation for the Nuclear Bulge

We have strong observational evidence that this is the right answer.

A Physical Interpretation for the Nuclear Bulge

Better fit to data - but oversubtraction at low energies.

A Physical Interpretation for the Nuclear Bulge

Tev Halos and the GCE

1LHAASO J0216+4237u 0.33 ATNF PSR J0218+4232 4FGL J0218.1+4232 0.33

 $\dot{E} = 2.44 \times 10^{35} \text{ erg s}^{-1}, \tau_c = 476000.0 \text{ kyr}, d = 3.15 \text{ kpc}$ PSR J0218+4232;MSP;

TeV Halos and the GCE

$$\dot{E}_{\rm tot} \sim 3.3 \times 10^{37} \, {\rm erg/s} \, \times \left(\frac{0.12}{\eta_{\gamma}}\right) \left(\frac{0.5}{f_{\rm beam}}\right)$$

This fits/overproduces the HESS data assuming that MSPs produce 100% of the HESS galactic ridge.

CTA will be strongly sensitive if MSPs produce halos in the nuclear bulge

TeV Halos and the GCE Note: Dim MSPs like AIC systems may not produce TeV halos. - OTOH — Formation of TeV halo not necessarily important for generation of diffuse signal.

$$D(E_e) = D_0 \times \left(\frac{E_e}{1 \text{ GeV}}\right)^{\delta}$$

$$L_{\rm TeV} = \dot{E}_{\rm tot} \eta = \frac{L_{\rm GeV} \eta}{\langle \eta_{\rm GeV} \rangle f_{\rm bea}}$$
$$= f_{\rm GCE} \frac{L_{\rm GCE} \eta}{\langle \eta_{\rm GeV} \rangle f_{\rm beam}},$$

LMXBs and the GCE

Globular Cluster	$Flux (erg/cm^2/s)$	Distance (kpc)	Stellar Encounter Rate
NGC 104	$2.51^{+0.05}_{-0.06} \times 10^{-11}$	4.46	1.00
NGC 362	$6.74^{+2.63}_{-2.46}\times10^{-13}$	8.61	0.74
Palomar 2	$<2.69\times10^{-13}$	27.11	0.93
NGC 6624	$1.14^{+0.10}_{-0.10} imes 10^{-11}$	7.91	1.15
NGC 1851	$9.05^{+2.92}_{-2.67} imes 10^{-13}$	12.1	1.53
NGC 5824	$<4.78\times10^{-13}$	32.17	0.98
NGC 6093	$4.32^{+0.57}_{-0.53}\times10^{-12}$	10.01	0.53
NGC 6266	$1.84^{+0.07}_{-0.10} imes 10^{-11}$	6.83	1.67
NGC 6284	$<2.85\times10^{-13}$	15.29	0.67
NGC 6441	$1.00^{+0.09}_{-0.07} imes 10^{-11}$	11.6	2.30
NGC 6652	$4.84^{+0.51}_{-0.52}\times10^{-12}$	10.0	0.70
NGC 7078/M15	$1.81^{+0.40}_{-0.39} imes 10^{-12}$	10.4	4.51
NGC 6440	$1.57^{+0.10}_{-0.11}\times10^{-11}$	8.45	1.40
Terzan 6	$2.18^{+1.20}_{-0.90} imes 10^{-12}$	6.78	2.47
NGC 6388	$1.77^{+0.06}_{-0.09} imes 10^{-11}$	9.92	0.90
NGC $6626/M28$	$1.95^{+0.13}_{-0.13}\times10^{-11}$	5.52	0.65
Terzan 5	$6.61^{+0.17}_{-0.13} \times 10^{-11}$	5.98	6.80
NGC 6293	$9.39^{+5.69}_{-5.45} imes 10^{-13}$	9.48	0.85
NGC 6681	$9.91^{+4.14}_{-3.86} imes 10^{-13}$	9.01	1.04
NGC 2808	$3.77^{+0.48}_{-0.48} imes 10^{-11}$	9.59	0.92
NGC 6715	$6.02^{+4.15}_{-3.77}\times10^{-13}$	26.49	2.52
NGC 7089	$<4.50\times10^{-13}$	11.56	0.52

LMXB	Notes	Globular Cluster	Refe
4U 1820-30	Р	NGC 6624	[69
4U 0513-40	Р	NGC 1851	[72
4U 1746-37	Р	NGC 6441	[69,]
XB 1832-330	Р	NGC 6652	[75, ']
M15 X-2	Р	NGC 7078/M15	[79
AC 211	Р	NGC 7078/M15	[69, 8
SAX J1748.9-2021	T, XP	NGC 6440	[75, 8]
GRS 1747-312	Т	Terzan 6	[85
Terzan 6 X-2	Т	Terzan 6	[
IGR J17361-4441	Т	NGC 6388	[89
IGR J18245-2542	T, XP	$\rm NGC~6626/M28$	[91
EXO 1745-248	Т	Terzan 5	[93
IGR J17480-2446	Т	Terzan 5	[95
Terzan 5 X-3	Т	Terzan 5	[
MAXI J0911-635	Т	NGC 2808	[

 τ clusters

Х

 $L_{\gamma}^{\mathrm{IG}} = L_{\gamma}^{\mathrm{cl}}$

TS3995.99.690.0 455.814.40.091.9850.70.0210.9128.329.7311.25.1778.4749.82707.13.987.296.72.60.0

 $V_{\rm LMXB}^{\rm IG}$ $N_{\rm LMXB}$

LMXBs and the GCE

 $L_{\gamma}^{\rm IG} = (1.50^{+0.65}_{-0.54}) \times 10^{36} \, {\rm erg/s},$

LMXBs and the GCE

 $L_{\gamma}^{\rm IG} = (1.50^{+0.65}_{-0.54}) \times 10^{36} \, {\rm erg/s},$

High Energy Excess

High Energy Excess

