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The Theme

• Dark matter is an explosive and broadly expansive 
field. 

• The next generation of telescopes will revolutionize 
our ability to probe both standard and esoteric dark 
matter models. 

• The astrophysics is the dominant theoretical difficulty 
— must overcome astrophysical uncertainties to 
unlock the potential of upcoming experiments. 
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• Dark Matter is: 

• Dark  
• Cold 
• Stable 

Gravitational Probes of Dark Matter
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Model Dark Matter 
Interactions

Constrain 
Astrophysics

Determine Correct 
Sources

The Program



• Search For: 

• Gamma-Rays 
• Cosmic-Rays 
• Neutrinos 

Progress Over the Last 10 Years
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Insights from Computational Modeling
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The Galactic Center is Complicated
Quintuplet Cluster  
ϴGC=0.2o, Age~4 Myr

Galactic Center is a dense star-
forming environment. 

3-20% of total Milky Way Star 
Formation 

2-4% - ISOGAL Survey Immer et al. (2012) 

2.5-5% - Young Stellar Objects Yusef-Zadeh et al. (2009) 
5-10% - Infrared Flux Longmore et al. (2013) 
10-20% - Wolf-Rayet Stars Rosslowe & Crowther (2014) 
2% - Far-IR Flux Thompson et al. (2007) 
2.5-6% - SN1a Schanne et al. (2007) 

Arches Cluster 
ϴGC=0.25o, Age~2 Myr

• The Supernovae of these 
stars produce 1051 erg!



There are four resilient features of the GeV Excess: 

1.) High Luminosity of ~2 x 1037 erg s-1 
2.) A hard gamma-ray spectrum peaking at ~2 GeV. 
3.) A roughly spherically symmetric emission morphology. 
4.) Extension from roughly 0.1o to >10o from the Galactic Center. 

The Galactic Center Excess Daylan et al (including TL) (2014; 1402.6703)



Spectrum Morphology

Sphericity Intensity

Significant Freedom 

Constrained Constrained 

Constrained 
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• Recent analyses of hot-spots and cold spots in the GC region 
find evidence for the presence of a population of sub-
threshold point sources. 

Bartels et al. (2015) Lee et al. (2015)

Evidence for Point Source Fluctuations?
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Bartels et al. (2015)

Lee et al. (2015)

Macias et al. (2016)

Morphological Evidence Supports Source Models Oppose

Cholis, Hooper, TL (2014)

Paul Ray (Private Communication)

Fermi-LAT Collaboration (2016)



Evidence for Point Source Fluctuations?

Calore et al.  (2015; 1512.06825)
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Clean != No Astrophysics

Galactic Diffuse Point Sources

Isotropic Emission Sub-Threshold Sources

• The emission is dim 
• Observational Challenge 
• Statistical Challenge



A Cleaner Regime Fermi-LAT Collaboration (2017; 1611.03184)



Observations Produce New Directions



The Reticulum II Excess!
New Observations Lead to Exciting Possibilities

Geringer-Sameth et al. (2015; 1503.02320) Hooper & TL (2015; 1503.06209)

• Detection of Reticulum II Dwarf resulted in immediate 
3-sigma evidence for dark matter annihilation.



The Reticulum II Excess!
New Observations Lead to More Work

TL (TBS)

• Systematic Uncertainties in Gamma-Ray Modeling are 
dominating the uncertainty in results. 

• New methods are under development to take into account 
these uncertainties.



A Cleaner Regime



• Search For: 

• Gamma-Rays 
• Cosmic-Rays 
• Neutrinos 

Progress Over the Last 10 Years
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Cosmic-Ray Antimatter Searches

Cuoco et al. (2016)
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Cosmic-Ray Antimatter Searches



The Future is Bright



• Search For: 

• Gamma-Rays 
• Cosmic-Rays 
• Neutrinos 

Progress Over the Last 10 Years
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Harnessing the Power of the Sun
Tang et al. (including TL) (2018; 1804.06846)

TL et al. (2018; 1803.05436)
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• Neutron Star 
• Mass = 1.4 Mo 

• Radius = 10 km 

• Subclass: Pulsar 
• Magnetic Field = 1010 T 

• Rotation Period = ~1 s

What is a Neutron Star?



• Sensitive probes of rare processes: 

1. Nuclear densities over macroscopic distances 

2. Strongest magnetic fields in the universe 

• Precise measurements are possible

Why Neutron Stars?



Neutron Stars: The Ultimate Direct Detection Experiment

Neutron Star 
• 1030 kg 
• 1012 days

1042 kg day

Xenon-1T 

• 1000 kg 
• 1000 days

106 kg day



Part I: Dark Matter-Neutron Star Interactions



• Neutron Stars are optically thick to dark matter.

Neutron Stars: The Optimal WIMP Detection Experiment

• Neutron stars gravitationally 
attract nearby dark matter 



DM-NS collisions impart significant energy into the NS:

Baryakhtar, Bramante, Li, TL, Raj (1704.01577)

This induces blackbody emission of luminosity:

Dark Matter Induced Heating



Potekhin & Chabrier (1711.07662)

• Thermal emission detected from 
young neutron stars. 

• Older neutron stars continue 
cooling. 

• Dark matter sets a minimum 
temperature of ~2000 K (1022 erg)

Detecting Thermal Neutron Star Emission



Baryakhtar, Bramante, Li, TL, Raj (1704.01577)

• Observations at 2000 K require infrared telescopes

• A pulsar at 10 pc would have a flux of ~2 nJy at 2 microns

JWST 
10 nJy in 104 s

GMT 
0.5 nJy in 105 s

Detecting Thermal Emission



Baryakhtar, Bramante, Li, TL, Raj (1704.01577)



Part II: Finding the Right Neutron Star



Harding (2016; J Plasma Phys 82) 

Radio Pulses: A Blessing and a Curse



• Tauris and Manchester (1998) 
calculated the pulsar beaming 
angle. 

• This varies between 10-30%. 

• 1/f pulsars are unseen in radio 
surveys.

Radio Pulses: A Blessing and a Curse



2o  ~ 10 pc 

A New Method for Detecting Invisible Pulsars
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• TeV halo observations solve many astrophysical puzzles 

• Prove that pulsars produce the positron excess 
(Hooper, Cholis, TL, Fang 1702.08436) 

• Explain the TeV gamma-ray excess                                          
(TL & Buckman 1707.01905) 

• Explain inhomogeneities in cosmic-ray diffusion , 
(Hooper & TL 1711.07482) (Evoli, TL, Morlino, 1807.09263) 

• Explain TeV gamma-rays from the Galactic center 
(Hooper et al. 1705.09293) 

• Provide insight into the formation and evolution 
of galactic pulsars (Sudoh, TL & Beacom, TBS)

Astrophysical Implications of TeV Halos



Discovering Invisible Pulsars at TeV Energies
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TL, Auchettl, Bramante, Cholis, Fang, Hooper, Karwal, Li (1703.09704)



Part III: Transient Signals
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The Secret Life of Dark Matter Inside a Neutron Star

Bramante & TL (1405.1031) 
Bramante & TL (1601.06784) 
Bramante, TL, Tsai (1706.00001)

• Capture - DM hits neutron and elastically scatters 

• Thermalization - Trapped dark matter thermalizes with 
neutron superfluid. If dark matter can annihilate, it will. 

• Collapse - Dark matter degeneracy pressure not capable 
of preventing collapse.
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LightGravity 

No DM Induced Collapse

An Electromagnetic Signal

NSNS
Light

Light

Gravity 

DM Induced Collapse
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LightGravity Light Gravity 

Merger Kilonovae  
Electromagnetic signals 
and gravitational waves 

jointly identified.                   

(proportional to ρ-1DM) 

Quiet Kilonovae 
Electromagnetic signals 

without gravitational 
waves. 

(proportional to ρDM).

Dark Mergers 
Gravitational waves 

without any 
electromagnetic signal. 

(proportional to ρDM).

New Phenomena
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Merger Kilonovae
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Constraining Dark Matter - Merger Kilonovae
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1. Understand Dark Matter/Neutron Star Interactions 

• Can set strong constraints on WIMP models 

• Can probe extremely generic                                                                                    
dark matter models. 

2. Differentiate dim dark matter signals from astrophysics 

• Need detailed models of neutron star physics. 

• Requires observations of pulsars with “special” attributes 

1. Nearby 

2. Not Beamed Towards Earth

The Program
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field. 
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• We must both probe standard dark matter paradigms 
and also branch out. 

• Separating astrophysics from dark matter signals is 
critical — detailed modeling is necessary.  

• The observations are coming!

Conclusions


