The Indirect Detection of WIMP Dark Matter Tim Linden **The Ohio State University**

CENTER FOR COSMOLOGY AND ASTROPARTICLE PHYSICS

Dan Hooper @DanHooperAstro · Apr 12 A massive particle dark matter candidate that:

21% Has electroweak charge

15% Is a thermal relic

21% Has a weak-scale mass

43% Is feebly interacting

144 votes • Final results

 \bigcirc 5

Limiting the Topic

- Which of the following is closest definition to how you use the word "WIMP".

 \sim

Limiting the Topic

Limiting the Topic WIMP Miracle

N_{eff} >3 MeV

Unitarity <124 TeV

Steigman et al. (1204.3622)

The Edge

z=0.0

For a 1 m² instrument, this produces a rate of 10-4 ann s⁻¹.

The Indirect Detection of Dark Matter Tim Linden

The Ohio State University

CENTER FOR COSMOLOGY AND ASTROPARTICLE PHYSICS

The Techniques

Three Methods to Separate Dark Matter Signals:

- Rare Particle Detection
- Spectral Mapping
- Angular Mapping

Rare Particle Detection Exploiting the fact that the universe is mostly matter

p + p -> p + p + n + n

 Kinematic threshold makes background negligible below **10 GeV.**

Dark matter signal dominate at low energies.

see slides from Kerstin Perez (this morning)

Cirelli et al. (1401.4017)

Rare Particle Detection

Exploiting the fact that the universe is mostly matter

To date, we have observed eight events in the mass region from 0 to 10 GeV/ c^2 with Z= -2 with rigidity <50 GV.

All eight events masses are in the ³He (6 events) and ⁴He (2 events) mass region.

The event rate is ~1 anti-helium in 100 million helium.

AMS-02 Collaboration (slides from La Palma)

Possible detection of anti-helium!

Rare Particle Detection Projecting 5 years

see slides from Kerstin Perez (this morning)

Spectral Mapping

Because we think we understand how Fermi acceleration works

Theory

Sources

Local Observations

Spectral Mapping

And we pretend we understand how diffusion works.

Moon (To Scale)

O

PSR B0656+14

Geminga

TeV Flux ~ 3 x 10³³ TeV s⁻¹ >10% of Spindown Power!

O

Powered by inverse Compton scattering of TeV e⁺e⁻

Diffusion near these TeV halos is highly inhibited!

HAWC observations probe ~30 TeV e+e-

Low-energy electrons propagate further, what diffusion constant do they encounter?

 $\alpha +$, d-. . $(E) \propto \int D_{o} E^{o}$

HAWC Collaboration (Science; 1711.06223)

Diffusion Remains inhibited

Diffusion returns to Galactic Average

HESS has observed electron + positron flux up to ~20 TeV.

High Diffusion

Low Diffusion

Sum Geminga B0656+14 10^{-1} Other Pulsars $\Phi_{e^-})$

 10^{1}

 $\Phi_{e^+}/(\Phi_{e^+}$

Very strong evidence that pulsars produce the positron excess

Spectral Mapping

Projecting 5 years

We will find dozens of these systems.

Spectral Mapping The Antiproton Excess

Cuoco et al. (1610.03071)

Spectral Mapping **The Antiproton Excess**

di Mauro et al. (1408.0288)

Largest uncertainty is antiproton production spectrum.

Cholis, Hooper, TL (TBS)

Very conservative approaches do not eliminate the excess.

Angular Mapping

Using gravity to understand where dark matter really is

Satellites: Low background and good source ID, but low statistics Galactic center: Good statistics but source confusion/diffuse background

Spectral lines: No astrophysical uncertainties, good source ID, but low statistics

Galaxy clusters: Low background but low statistics Milky Way halo: Large statistics but diffuse background

Extragalactic:

Large statistics, but astrophysics, Galactic diffuse background

Dwarf Spheroidal Galaxies

continue to probe the thermal annihilation cross-section.

Constraints from gamma-ray observations of dwarf spheroidal galaxies

Dwarf Spheroidal Galaxies Projecting 5 years

Fermi-LAT constraints will only improve by a factor of ~2. However, observations of nearby dwarf spheroidal galaxies can

However, observations of nearby significantly improve constraints.

with a thermal WIMP.

Daylan et al. (1402.6703)

Extremely strong evidence from multiple groups that the Galactic center excess exists — and it's features are generically compatible

Pulsars Provide a Reasonable match to the gamma-ray spectrum.

Abazajian (1011.4275)

Lee et al. (1506.05124)

Some evidence that the excess is composed of an ensemble of point sources.

Bartels et al. (1506.05104)

Galactic Longitude (degrees)

Galactic Center Excess Projecting 5 years

SKA observations should conclusively test the pulsar interpretation.

Calore et al. (1512.06825)

Galactic Center Excess **Projecting 5 years**

J-factor uncertainties dominate the tension between dwarfs and the GCE.

Galactic Center Excess **Projecting 5 years**

ğ Ē ocity Angular 00

<u>_10</u>

Galactic Center Excess **Projecting 10 years**

The low-energy spectrum distinguishes pulsars from dark matter.

Future MeV instruments (AMEGO, e-ASTROGAM) can differentiate this emission.

Galactic Center Constraints

HAWC Collaboration (1607.08142)

HESS observations of the Galactic center probing thermal cross-section near 1 TeV.

Galactic Center Constraints

CTA observations will significantly improve these constraints, but their effectiveness depends on the dark matter density near the Galactic center.

Radio Observations

Magnetic

Field

+ Angular Resolution

+ Sensitivity

- Angular Mapping

Radio Observations

Upcoming radio observations in clusters can potentially constrain

thermal dark matter models (even if substructure boost is low).

Cosmic Microwave Background

Slatyer (1506.03811)

Constraints from CMB experiments exclude low-mass dark matter, but unlikely to improve significant. EDGES?

EDGES/ARCADE?

EDGES - Strong constraints

see talk by Hongwan Liu, just stay in this room!

ARCADE - A Possible Signal?

Are Thermal WIMPs Ruled Out?

see talk by Rebecca Leane on Wednesday

Leane et al. (1805.10305)

Depending on channel, a significant portion of the WIMP window is still open.

Conclusions

Conclusions

