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NEUTRON STARS AS DIRECT DETECTION LABORATORIES

▸ Xenon1T 

▸ 1000 kg 

▸ 730 day 

▸ 7.3 x 105 kg day

▸ Neutron Star 

▸ 2.8 x 1030 kg 

▸ 1.8 x 1010 day 

▸ 5.0 x 1040 kg day



NEUTRON STARS AS DIRECT DETECTION LABORATORIES

▸ Neutron stars are sensitive to very small interaction 
cross-sections:

▸ This saturates the sensitivity of neutron stars as dark 
matter detectors. Do not get additional sensitivity to 
higher cross-sections (in general).



NEUTRON STARS AS DIRECT DETECTION LABORATORIES

Goal: Become sensitive to single dark matter nucleon 
scattering events in an energetic 1 Mo neutron star that is 
300 light years away.



NEUTRON STARS AS DIRECT DETECTION LABORATORIES

Reasonable Goal: Produce observations that would be 
sensitive to ~1035 dark matter neutron star interactions 
over the history of the universe.



CONVERTING PARTICLE INTERACTIONS INTO ASTROPHYSICS!

▸ Pulsars = Quickly rotating NS with 
strong B-fields 

▸ Rotation slows due to dipole 
radiation, which is visible. 

▸ We know a lot about pulsars: 

▸ Age 

▸ Spin-down power 

▸ Distance (dispersion) 

▸ Masses



HOW’S THIS FOR AN ASTROPHYSICAL SIGNAL?



The Physics Required to Convert Particle Physics 
Interactions into Astronomical Observables



DARK MATTER ACCUMULATION IN NEUTRON STARS

▸ Three Stages of Dark Matter Accumulation: 

▸ Dark Matter Capture 

▸ DM hits neutron and elastically scatters 

▸ Dark Matter Thermalization 

▸ Trapped dark matter interacts with nucleon fluid and achieves 
temperature equilibrium. 

▸ Dark Matter Collapse 

▸ Dark matter degeneracy pressure not capable of preventing 
collapse.



STAGE I: CAPTURE: ASTROPHYSICAL ENHANCEMENTS

▸ Two enhancements: 

▸ NS gravitational potential well 

▸ Regions with high dark matter density

Potential well moves slowly 
moving dark matter particles 
into collisional orbit. 

Interaction rate scales as vX-1.



▸ Two enhancements: 

▸ NS gravitational potential well 

▸ Regions with high dark matter density

Iocco et al. (2015;1502.03821)STAGE I:  CAPTURE: ASTROPHYSICAL ENHANCEMENTS



STAGE I: CAPTURE: PARTICLE PHYSICS ENHANCEMENTS

▸ Two enhancements: 

▸ Interactions are relativistic (p-wave) 

▸ Spin-Dependent Interactions

Neutron Stars are a dark matter collider:

Dark Matter interacts with a neutron star relativistically

Can probe p-wave suppressed or mass-split (e.g. Higgsino) DM



STAGE I: CAPTURE: PARTICLE PHYSICS ENHANCEMENTS

▸ Two enhancements: 

▸ Interactions are relativistic (p-wave) 

▸ Spin-Dependent Interactions

NS composed primarily of neutrons. 

No difference between spin-independent and spin-
dependent interactions.



▸ Two impediments to dark matter interactions: 

▸ Pauli Blocking (low-mass dark matter) 

▸ Dark Matter Capture (high-mass dark matter)

STAGE I: CAPTURE: PARTICLE PHYSICS IMPEDIMENTS

Dark Matter scattering imparts a momentum:

Typical NS neutron momentum is:

This suppresses the interaction cross-section for low mass DM:



▸ Two impediments to dark matter interactions: 

▸ Pauli Blocking (low-mass dark matter) 

▸ Dark Matter Capture (high-mass dark matter)

Dark Matter energy lost in a scatter with a GeV proton is 
approximately:

If this is smaller than the DM kinetic energy  at infinity the dark 
matter will not remain bound after a single interaction:

STAGE I: CAPTURE: PARTICLE PHYSICS IMPEDIMENTS



STAGE I: CAPTURE: PARTICLE PHYSICS IMPEDIMENTS
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STAGE II: THERMALIZATION

▸ Dark Matter thermalization 
is always suppressed by 
Pauli blocking. 

▸ Analytical and numerical 
models have very different 
predictions.

Bertoni et al. (2013; 1309.1721)

▸ However, if DM is trapped within the NS, interactions are 
still inevitable, and dark matter thermalizes on a 
significantly smaller timescale than DM capture:



STAGE III: ANNIHILATION OR COLLAPSE

▸ Two paths are now possible: 

▸ If dark matter can annihilate, the large densities make 
annihilation inevitable. 

▸ If dark matter cannot annihilate, dark matter builds 
mass until it exceeds its own degeneracy pressure. 
For Fermionic dark matter this is: 

▸ It then collapses on a timescale:



STAGE III: PARTICLE PHYSICS MOTIVATIONS FOR COLLAPSE

▸ Asymmetric Dark Matter is well-motivated 

▸ e.g. Baryon/Lepton Asymmetry through dark baryogengesis 

▸ Some models do not work, e.g. GeV Fermions require ~1 Mo of 
dark matter to be accreted 

▸ Many models do work: 

▸ PeV Fermionic DM (~10-10 Mo) 

▸ Bosonic DM (MeV - PeV) with small quartic 

▸ MeV-PeV DM with attractive potential (e.g. Scalar Higgs 
Portal)



NEUTRON STAR COLLAPSE

▸ Key Goals: 

▸ Observe an astrophysical signature from dark matter 
accumulation in neutron stars 

▸ Differentiate this signal from astrophysics.



POSSIBLE SIGNATURES OF DARK MATTER INTERACTIONS

▸ Neutron star heating - Requires only dark matter 
accumulation (Stage I) 

▸ Neutron star collapse (Requires Stage I, II, and III)



STAGE I: CAPTURE: ASTROPHYSICAL ENHANCEMENTS

▸ Two enhancements: 

▸ NS gravitational potential well
Potential well moves slowly 
moving dark matter particles 
into collisional orbit. 

Interaction rate scales as vX-1.

Collision velocity is high! 



DARK KINETIC HEATING

▸ A dark matter particle impacts a neutron star surface 
with significant kinetic energy: 

▸ This sets a minimum energy input to the neutron star:

Baryakhtar, Bramante, Li, TL, Raj (1704.01577)

▸ The dark matter particle 
does not need to annihilate, 
but if it does, more energy 
is injected (Es = 𝛄mX).

de Lavallez & Fairbairn (1004.0629)



DARK KINETIC HEATING Baryakhtar, Bramante, Li, TL, Raj (1704.01577)



DARK KINETIC HEATING

▸ In addition to pulsations, a handful of pulsars have 
been detected via blackbody radiation. 

▸ Primarily at temperatures ~106 K.

Shternin et al. (1012.0045)



DARK KINETIC HEATING

▸ Older neutron stars are expected to cool effectively. 

▸ 20 Myr neutron stars are believed to have 
temperatures < 1000 K. 

Shternin et al. (1012.0045)



DARK KINETIC HEATING

▸ Dark matter then 
thermalizes with the NS. 

▸ Energy transferred into 
nucleon kinetic energy. 

▸ Neutron star emits as a 
blackbody with 
luminosity:

Baryakhtar, Bramante, Li, TL, Raj (1704.01577)

▸ This corresponds to a temperature ~1750 K for dark 
matter saturating the direct detection cross-section. 

▸ Exceeds the sensitivity of standard direct detection. 



DARK KINETIC HEATING

▸ Seeing this signal requires 
extremely sensitive 
infrared observations. 

▸ Fortunately, such 
telescopes are coming 
online: 

▸ James Webb 

▸ Thirty Meter Telescope

Baryakhtar, Bramante, Li, TL, Raj (1704.01577)

▸ Nominal JWST sensitivity is ~10 nJy at 104 s. 

▸ TMT can reach 0.5 nJy in ~105 s, if backgrounds can be 
controlled.



SOME COMPLEXITIES

▸ Neutron star needs to be a pulsar, so it can be located 
in radio observations. 

▸ Closest pulsar ~90 pc, but models indicate a pulsar 
with distance ~10-20 pc should exist. 

▸ Alternative heating mechanisms: 

▸ Baryonic Heating on interstellar medium? 

▸ Heating powered by magnetic turbulence?

Baryakhtar, Bramante, Li, TL, Raj (1704.01577)



POSSIBLE SIGNATURES OF DARK MATTER INTERACTIONS

▸ Neutron star heating - Requires only dark matter 
accumulation (Stage I) 

▸ Neutron star collapse (Requires Stage I, II, and III) 

▸ Missing neutron stars 

▸ Electromagnetic signatures 

▸ Fast Radio Bursts 

▸ Kilonovae 

▸ r-process enrichment 

▸ Gravitational wave signatures



A CONSTRAINT!



PROBLEM: WE SEE OLD NEUTRON STARS

▸ We observe ~5 Gyr old neutron stars us. 

▸ Thus dark matter must not collapse neutron stars too effectively.  

▸ Sets strong constraints on dark matter that collapses neutron 
stars - e.g. here in the case of scalar dark matter.

McDermott et al. (1103.5472)



PROBLEM: WE SEE OLD NEUTRON STARS

▸ Or Fermionic Dark matter with an attractive self-
interaction cross-section.

Bramante et al. (1310.3509)



A SIGNAL !?



A SIGNAL !?



THE MISSING PULSAR PROBLEM

▸ The Galactic center should host ~10% of the young pulsars 
surrounding the Galactic center. 

▸ We haven’t seen them?



THE MISSING PULSAR PROBLEM

▸ Large pulse dispersion was 
reasonable culprit 

▸ Magnetar found in X-Ray 
observations in 2013. 

▸ No pulse dispersion in X-
Rays

Dexter, O’Leary (1310.7022)

▸ Magnetar subsequently found in radio 

▸ Pulse dispersion is small! 

▸ Why aren’t any other pulsars observed !?



DARK MATTER INDUCED NEUTRON STAR COLLAPSE

▸ High Dark Matter 
density near the GC. 

▸ GC NS collapse in 
~105 yr while nearby 
NS remain.

Bramante, TL (1405.1031)

Bosonic DM 
ƛ|ɸ|4 = 10-15.

Constraint
Detection

▸ Constrains cross-section to within a few orders of 
magnitude.



NEUTRON STAR COLLAPSE

▸ Potential Observation: 
A correlation between 
maximum NS age and 
GC radius. 

▸ Can be confirmed or 
ruled out with one old 
pulsar observation 
near the GC.

Bramante, TL (1405.1031)

▸ Upcoming radio instruments 
(e.g. MeerKat, SKA) will 
definitively test the missing 
pulsar problem.

Eatough  et al. (1501.00281)



POSSIBLE SIGNATURES OF DARK MATTER INTERACTIONS

▸ Hard to discover dark matter with a dog that didn’t 
bark….



POSSIBLE SIGNATURES OF DARK MATTER INTERACTIONS

▸ Hard to discover dark matter with a dog that didn’t 
bark…. 

▸ Can we find a positive signature of dark matter induced 
neutron star collapse? 

▸ Gravitational wave signatures 

▸ Electromagnetic signatures 

▸ Fast Radio Bursts 

▸ Kilonovae 

▸ r-process enrichment



IN CASE YOU’VE BEEN ASLEEP (EITHER LAST 30 MIN OR LAST 5 MONTHS)



NEUTRON STAR COLLAPSE PRODUCES NEUTRON STAR MERGER SIGNALS



NEUTRON STAR COLLAPSE PRODUCES NEUTRON STAR MERGER SIGNALS



A NEW SOURCE OF GRAVITATIONAL AND ELECTROMAGNETIC SIGNALS 

▸ Disassociation of electromagnetic and gravitational wave signatures

Electromagnetic  
SignalsGravitational 

 Wave

No DM Induced Collapse DM Induced Collapse

Gravitational 
 Wave

Electromagnetic  
Signals



DISSOCIATION OF EM AND GRAVITATIONAL SIGNATURES

▸ Disassociation of electromagnetic and gravitational wave signatures

Electromagnetic  
SignalsGravitational 

 Wave

No DM Induced Collapse Binary DM Induced Collapse



DISSOCIATION OF EM AND GRAVITATIONAL SIGNATURES

▸ Disassociation of electromagnetic and gravitational wave signatures

Electromagnetic  
SignalsGravitational 

 Wave

No DM Induced Collapse DM Induced Collapse



DISSOCIATION OF EM AND GRAVITATIONAL SIGNATURES

▸ Disassociation of electromagnetic and gravitational wave signatures

Electromagnetic  
SignalsGravitational 

 Wave

No DM Induced Collapse DM Induced Collapse

1.4 Mo ?



SOME TERMS

▸ Merger Kilonovae - Bright r-process afterglows of NS-
NS binary mergers. 

▸ Quiet Kilonovae - Possible r-process afterglows of DM 
induced neutron star collapse 

▸ Black Mergers - Interactions that look like NS-NS 
binaries to LIGO, but both NS have already collapsed, 
and thus no electromagnetic counterpart is found.

Bramante, TL, Tsai (1706.00001)



MIND THE MASS GAP - THE LOWEST MASS BLACK HOLES

Belczynski et al. (2011, 1110.1635)

Farr et al. (2010, 1011.1459)

▸ Observations have found a 
significant gap between the 
smallest black holes and the 
heaviest neutron stars. 

▸ This is often used as a 
metric for NS 
identification.



GRAVITATIONAL WAVES FROM SINGLE STAR COLLAPSE

▸ Gravitational Waves from DM induced collapse

▸ Single NS collapse models 
have been considered 
(primarily from accretion 
induced collapse). 

▸ DM induced NS collapse 
observable throughout 
the Milky Way (0.01 yr-1 ?)

Baiotti et al. (gr-qc/0701043)



GRAVITATIONAL WAVES FROM BINARY LM-NS MERGERS

▸ Anomalies in the tidal strain of binary neutron star mergers.

Littenburg et al. (1503.03179)

▸ DM induced NS collapse 
produces a population of 1.4 
Mo black holes. 

▸ Can potentially see differences 
in merger and ring-down, but 
not presently feasible.



GRAVITATIONAL WAVES FROM BINARY LM-NS MERGERS

▸ Anomalies in the tidal strain of binary neutron star mergers.

Littenburg et al. (1503.03179)

▸ DM induced NS collapse 
produces a population of 1.4 
Mo black holes. 

▸ Can potentially see differences 
in merger and ring-down, but 
not presently feasible.

Yang et al.  (1710.05891)



POSSIBLE SIGNATURES OF DARK MATTER INTERACTIONS

▸ Hard to discover dark matter with a dog that didn’t 
bark…. 

▸ Can we find a positive signature of dark matter induced 
neutron star collapse? 

▸ Gravitational wave signatures 

▸ Electromagnetic signatures! 

▸ Fast Radio Bursts 

▸ Kilonovae 

▸ r-process enrichment



▸ For every position r - the delay time before explosion 
can be computed in any particle physics model.

A USEFUL UNITA USEFUL UNIT

on this slide: Tim learns that the Surface ProⓇ allows him to write directly onto slides (sorry!)



FAST RADIO BURSTS

▸ Short (~ms) radio bursts first discovered in 2007 

▸ High dispersion measure indicates extragalactic origin. 

▸ One repeating fast radio bursts, but others appear not to repeat. 

▸ Origin unknown.



FAST RADIO BURSTS FROM PULSARS

▸ Millisecond timescale 
indicates r < 300 km. 

▸ Radio pulsar magnetic 
fields have necessary 
energetics and timescales. 

▸ Models of NS mergers and 
accretion induced collapse 
have been produced.

Falcke & Rezzolla (1307.1409)



FAST RADIO BURSTS FROM PULSARS

▸ FRB rates may be as high as 
105 day-1. 

▸ Consistent with a galactic 
FRB rate of 10-2 yr-1 and 
with the SN rate. 

▸ Consistent with the cross-
sections needed to explain 
the missing pulsar 
problem.

Fuller & Ott (1412.6119)

Bramante et al. (1706.00001)



R-PROCESS ENRICHMENT OF DWARF SPHEROIDAL GALAXIES



R-PROCESS ENRICHMENT OF DWARF SPHEROIDAL GALAXIES

▸ Producing elements with large 
neutron over density requires 
extremely neutron-dense 
environment to avoid β-decay



R-PROCESS ENRICHMENT OF DWARF SPHEROIDAL GALAXIES

▸ This can be done in steady state - determining the 
galactic archeology of chemical evolution…



MERGER KILONOVAE

▸ Disassociation of electromagnetic and gravitational wave signatures

▸ Or can be found in transient events, such as merger 
kilonovae from neutron star mergers.

Metzger (1610.09381)



R-PROCESS ENRICHMENT OF DWARF SPHEROIDAL GALAXIES

▸ Differentiating supernovae and 
neutron star binary mergers 

▸ Supernovae are common:       
0.02 SN yr-1 in Milky Way 

▸ Neutron Star Mergers Rare:      
10-4 yr-1 in Milky Way 

▸ But r-process yields for each 
unknown - degenerate with 
rate!



NEUTRON STAR COLLAPSE

▸ Direct neutron star collapse occurs in regions with 
similar densities and magnetic fields.  

▸ Can naively expect similar signals. 

▸ Detailed models coming!



R-PROCESS ENRICHMENT OF DWARF SPHEROIDAL GALAXIES



▸ For every position r - the delay time before explosion 
can be computed in any particle physics model.

A USEFUL UNITA USEFUL MEASUREMENT

can examine the morphology of these events!



TWO WAYS TO UTILIZE MORPHOLOGICAL INFORMATION

▸ 1.) Look in regions with where the dark matter signal 
should be dominant. 

▸ 2.) Look at the distribution of events in galactic 
systems.



R-PROCESS ENRICHMENT OF DWARF SPHEROIDAL GALAXIES

▸ Reticulum II dSph  

▸ Discovered by DES in 2015 

▸ Spectroscopic follow-up 
determined r-process 
abundances. 

▸ Large r-process abundance, 
but low metallicity! 

▸ Points to a rare formation 
channel (NS mergers)

Ji et al. (1512.01558)



HOWEVER, BINARY STELLAR EVOLUTION IS TRICKY

▸ Neutron stars receive large 
natal kicks due to 
asymmetries in the 
supernovae explosion. 

▸ vkick ~ 400 km s-1. 

▸ Escape velocity of dSph 
~10 km s-1. 

▸ Low kick neutron star 
populations are possible 
(e.g. globular clusters)



NEUTRON STAR KICKS IN BINARY MERGERS

▸ Mergers require kicks to 
move binary from widely 
separated supergiant 
system to tightly bound NS-
NS binary.

Willems & Kalogera (astro-ph/0312426)



DOUBLE NEUTRON STAR ESCAPE FROM DSPHS

▸ The escape velocity from a dwarf spheroidal galaxy is 
small: 

▸ Natal kicks remove >99% of all binaries from the 
dwarf spheroidal galaxy.

Bramante & TL (1601.06784)



DARK MATTER INDUCED COLLAPSE IN DSPHS

▸ The dispersion velocity in dwarfs is also small.  

▸ Reticulum II: 3.3 +/- 0.7 km s-1 (Simon et al. 2015) 

▸ Dark matter accumulation rate scales inversely with 
velocity: 

▸ Dwarf Spheroidal Galaxies are an optimal laboratory 
for asymmetric dark matter detection.

Bramante & TL (1601.06784)



RATES FROM DARK MATTER INDUCED COLLAPSE

▸ Normalize the nuclear 
cross-section to the 
missing pulsar problem. 

▸ Supernovae produce 
~100 events. 

▸ Mergers produce 
~0.0005 events 

▸ DM induced collapse 
produces ~0.1-3 events.

Bramante & TL (1601.06784)



RATES FROM DARK MATTER INDUCED COLLAPSE

▸ Normalize the nuclear 
cross-section to the 
missing pulsar problem. 

▸ Supernovae produce 
~100 events. 

▸ Mergers produce 
~0.0005 events 

▸ DM induced collapse 
produces ~0.1-3 events.

Bramante & TL (1601.06784)



R-PROCESS ENRICHMENT OF THE MILKY WAY

▸ Can roughly estimate the maximal r-process 
production rate via energetics: 

▸ This energy can propel neutrons from the NS surface at 
v = 0.7c. The maximum mass that can be lost is: 

▸ The actual r-process enrichment depends on the 
quantity and density of neutrons which escape in the 
implosion. Computational models are needed.

Bramante & TL (1601.06784)



R-PROCESS ENRICHMENT OF THE MILKY WAY

▸ How much r-process enrichment per dark matter 
induced collapse?

Bramante & TL (1601.06784)

▸ Currently abundance  

▸ Yields between                           
5 x 10-5 Mo and 10-3 Mo 
can explain Milky Way 
r-process abundance. 

▸ Significant uncertainties in r-process element transport 
throughout the Milky Way.  



R-PROCESS ENRICHMENT IN GLOBULAR CLUSTERS

▸ Prediction: Globular Clusters should not be similarly r-
process enriched.

Roederer 2011 (1104.5056)

▸ In fact, no globular 
cluster has been 
observed to have an 
r-process 
overabundance 
exceeding 1.2 dex.

▸ 6 of 9 stars in Reticulum II have r-process enrichment 
exceeding 1.68 dex.



TWO REGIMES

▸ 1.) Look in regions with where the dark matter signal 
should be dominant. 

▸ 2.) Look at the distribution of events in galactic 
systems. 

▸ Separate individual events by looking for transients!



SOME TERMS

▸ Merger Kilonovae - Bright r-process afterglows of NS-
NS binary mergers. 

▸ Quiet Kilonovae - Possible r-process afterglows of DM 
induced neutron star collapse 

▸ Black Mergers - Interactions that look like NS-NS 
binaries to LIGO, but both NS have already collapsed, 
and thus no electromagnetic counterpart is found.

Bramante, TL, Tsai (1706.00001)



RADIAL DEPENDENCE OF DM INDUCED COLLAPSE

▸ Utilizing models normalized to the missing pulsar 
problem, we find that the dark merger rate should be 
significant! 

▸ Difficult to argue that you have found dark matter by 
not seeing something that you should….

Bramante, TL, Tsai (1706.00001)



RADIAL DEPENDENCE OF DM INDUCED COLLAPSE

▸ The Dark Matter 
distribution determines the 
stellar collapse rate. 

▸ The morphology of DM 
induced mergers differs 
from baryonic ones. 

▸ Bright kilo novae associated 
with NS-NS mergers should 
be detected, but only in the 
outskirts of galaxies.

Bramante, TL, Tsai (1706.00001)

also FRBs!

DNS events = 1-x



USING SPATIAL INFORMATION TO FIND DM

▸ By localizing either 
merger kilonovae or fast-
radio bursts, can 
differentiate models 
where DM collapses NS. 

▸ FRB instruments such as 
CHIME expected to detect 
~1000 FRBs in the next 
few years.

Bramante, TL, Tsai (1706.00001)



DISCUSSION AND CONCLUSIONS

▸ Asymmetric dark matter models naturally produce 
neutron star collapse in regions with high dark 
matter density and low velocity dispersion. 

▸ There are a number of astrophysical signals (and 
hints!) of such interactions. 

▸ Future observations are likely to definitively prove, 
or rule out, this class of models.


