
Searching for Dark Matter in the Fermi Era Tim Linden¹ with Stefano Profumo¹ Brandon Anderson¹ and Jennifer Siegal-Gaskins²

University of California – Santa Cruz
 The Ohio State University
 Cosmo Club UC – Santa Cruz

April 21, 2010

Outline

- Are we already seeing dark matter?
- Difficulties in extracting a dark matter signal
- How could we determine whether an unknown signal is due to dark matter annihilation?

T. Porter, 2009 (0907.0294)

Many sources:

- Extragalactic
- π^0 decay
- Inverse Compton Scattering
- Bremsstrahlung Emission
- Unresolved Point Sources

T. Porter, 2009 (0907.0294)

Many sources:

- Extragalactic
 - Isotropic Source Classes
 - Sources include blazars, starburst galaxies
- $\circ \pi^0$ decay
- Inverse Compton Scattering
- Bremsstrahlung Emission
- Unresolved Point Sources

T. Porter, 2009 (0907.0294)

Many sources:

Extragalactic

• π^0 decay

- Proton collisions with galactic dust
- Well defined emission spectra
- Inverse Compton Scattering
- Bremsstrahlung Emission
- Unresolved Point Sources

T. Porter, 2009 (0907.0294)

Many sources:

- Extragalactic
- π^0 decay
- Inverse Compton Scattering
 - Interactions of charged leptons with Interstellar radiation field
- Bremsstrahlung Emission
- Unresolved Point Sources

T. Porter, 2009 (0907.0294)

Many sources:

- Extragalactic
- π^0 decay
- Inverse Compton Scattering
- Bremsstrahlung Emission
 - Relatively weak sources at high energies and away from the galactic center
- Unresolved Point Sources

T. Porter, 2009 (0907.0294)

Many sources:

- Extragalactic
- π^0 decay
- Inverse Compton Scattering
- Bremsstrahlung Emission
- Unresolved Point Sources
 - Systematic error Intensity and spectra changes over time

Is There Any Room Left for DM?

T. Porter, 2009 (0907.0294)

- How large are the astrophysical uncertainties in each of these background signals?
- Playing a very different game than direct dark matter detection (e.g. CDMS)

Should see millions of events

But no background rejection

Modeling Astrophysical Sources

- Dobler et al. (2009) created models for the morphology of these astrophysical components
 - Point sources subtracted from 3-month Fermi catalog
 - $\,\circ\,$ SFD Dust Map for π^0 decay
 - Haslam 408 Mhz map for ICS
 - Residual Map mean subtracted to eliminate isotropic

Dobler et al (2009) (0910.4583)

An Enticing Residual!

 Dobler et al. finds a significant residual when these maps are applied

 Residual has a pronounced morphology above and below the galactic center

Modeling this residual

 To map this residual,
 Dobler et al add an ad hoc template

This template is a bivariate gaussian with latitudinal scale height $\sigma_b = 25^\circ$, and a longitudinal scale height of $\sigma_l = 15^\circ$

These residuals are large!

The haze template is co-dominant with the isotropic background above 10 GeV

 Other templates have reasonable spectra

 $|I|\,<\,15^{o}\ -30^{o}\,<\,b\,<\,-10^{o}$

But do we trust these templates?

> SFD Dust Map for π^0 decay

- Dust is a reasonable tracer for galactic gas
- Gas acts as the target of energetic protons

But do we trust these templates?

- SFD Dust Map for π⁰ decay
 - But the cosmic ray distribution is not isotropic!

But do we trust these models?

- Haslam 408 Mhz skymap for inverse Compton scattering
 - At 408 Mhz, the radio sky should be dominated by synchrotron of energetic leptons.
 - These same leptons should create γ-ray emission due to ICS of the interstellar radiation field.

But do we trust these models?

Haslam 408 Mhz skymap for inverse Compton scattering

• The morphology of the interstellar radiation field is <u>not</u> the same as the morphology of the galactic magnetic fields.

$$\frac{\text{ISRF}}{\text{B}^2} \neq 1$$

Our Setup

- We use GALPROP models to test the morphological consistency of:
 - $\circ\,$ 1.) The π^0 decay morphology and the input gas map
 - 2.) The ICS decay morphology and the 408 Mhz synchrotron morphology

π^0 Decay divided by Gas Map

The resulting skymap has a haze-like morphology that can be fit with a Gaussian 17% as strong as the estimated π⁰ skymap

Important at low energies

 The π⁰ decay morphology is dominant up to several GeV

 A 17% Gaussian residual can explain the majority of the haze around 1 GeV

ICS divided by Synchrotron

The ratio of the ICS map to the synchrotron map also show a haze morphology

Highly energy dependent

Low intensity 16% to -4%

ICS / Sync is very uncertain

By slightly altering the magnetic field morphology, we can create larger deviations

Same energy dependence as before

Large Gaussian errors (54% to 40%)

ICS / Sync is very uncertain

By slightly altering the magnetic field morphology, we can create larger deviations

Flat magnetic field model

This model was used to generate the WMAP haze morphology

Also Important at low energies

 Expected ICS signal is a significant fraction of the haze residual below 10 GeV

 This appears to leave a discrepancy at high energies, but eliminates it below ~10 GeV

First Conclusions

- The current analysis of the Fermi-Haze is insufficient to determine either the intensity or the spectrum of any Fermi residual
- Early measurements suggest that the Fermi haze at low energies (<10 GeV) could be entirely explained with theoretically correct templates for pi0 and astrophysical ICS emission.

A More Direct Analysis

T. Porter, 2009 (0907.0294)

- At 1-2 GeV, emission from π⁰ decay should be highly dominant
- Note that the π⁰ decay morphology should be constant as a function of energy

Residuals!

Process:

- 1.) Subtract out the morphology of the 1-2 GeV map
- 2.) Find the morphology of the residual
- Dobler et al. find there is still a visible haze
- Some/Most of this haze is likely astrophysical ICS
 - Can't determine an intensity/spectrum

Understanding Residuals

- Dobler et al note a correlation between the Fermi haze and the WMAP haze
- Find that this suggests a new primary electron source near the galactic center

Understanding Residuals

But it is difficult to model the Fermi haze with only a new lepton input class, as the interstellar radiation function falls off too quickly.

Between 10° to 30° latitude, the ISRF dims by between 63-72%

The longitudinal to latitudinal extent moves from 5-4 to 9-1 at low energies

DM Interpretation?

Simulated Dark matter models produce a haze that decays much too quickly at high latitudes to match the observed haze.

1500 GeV $\rightarrow \mu^+\mu^-$ Snapshot at 8 GeV

Possible Sources

- > There are quite a few possible sources for this residual:
 - Nearby sources
 - Jets from galactic center
 - Magnetic anomalies (e.g. Loop 1 Casandjian et al. 2009, 0912.3478)
 - Changes in the Interstellar radiation field
 - Energy dependence changes in diffusion parameters
- But it is very difficult to match emission using purely diffuse sources or spherical distributions, as they will always have more longitudinal extent.

How do we distinguish?

- New methods are necessary for distinguishing between various emission mechanisms
 - Multi-wavelength studies

Anisotropic studies

Multi-wavelength Studies

Several Important cross-checks:

- WMAP Energetic leptons should also produce microwave radiation through synchrotron in the galactic B–field
- ROSAT SNR and galactic anomalies may produce X-ray signatures
- PAMELA New primary sources may match the observed positron/electron spectrum
- HESS Very high energy γ-ray's should match these observations

- Finkbeiner (2004) pointed out an unexplained residual in the WMAP dataset
- The existence of this residual is controversial, and is not detected by the WMAP team (Gold et al. 2010)

- Finkbeiner (2004) pointed out an unexplained residual in the WMAP dataset
- The existence of this residual is controversial, and is not detected by the WMAP team (Gold et al. 2010)

Hooper et al. (2007) (0705.3655)

- Hooper et al. (2007) explained the WMAP haze as the result of dark matter annihilation
- Also explained by pulsars (Kaplinghat et al. 2009)

Hooper et al. (2007) (0705.3655)

- The dark matter matches to this haze depended on nonstandard diffusion parameters
- $M_X = 100 \text{ GeV}$
- $\bullet B = 10 \ \mu G$
- $XX \rightarrow e^+e^-$
- NFW Profile
- $D_0 = 1.58 \times 10^{28} \text{ cm}^2 \text{s}^{-1}$ (4 GeV)

Hooper et al. (2007) (0705.3655)

Research Goals

- Evaluate a select range of well motivated
 WIMP theories
- Test the DM interpretation of the WMAP haze using cosmic ray propagation models that are consistent with all current observations and data

Our modeling code

- Use DarkSUSY to calculate the primary e⁺e⁻ spectrum for a range of well motivated DM models
- Use Galprop to determine the synchrotron emission and nuclear abundances in each propagation model
- Isolate the simulated DM haze by subtracting the synchrotron component from the corresponding simulation with DM disabled.

Dark Matter Models

We test three DM annihilation channels which span a range of motivated WIMP decay models
Electron-Positron Input Spec

Soft (40 GeV XX \rightarrow b b-bar)

Wino (200 GeV XX \rightarrow W⁺W⁻)

Hard (1500 GeV XX $\rightarrow \mu^+\mu^-$)

UC - Santa Cruz

4/21/10

Tim Linden

Galprop Models

- Employing the public version of Galprop, we use the following parameters in our default setup:
 - $D_0 = 5.0 \times 10^{28} \text{ cm}^2 \text{ s}^{-1}$
 - Simulation Height = 4 kpc
 - $V_{alfven} = 25 \text{ km s}^{-1}$
 - Convection = Disabled
 - B = 11.6 exp(-r / 10kpc z / 2kpc) μG

Boost Factors

We multiply the simulated haze by a universal constant to match the observed WMAP haze at 10 degrees latitude and 23 Ghz.

 $\Phi = \rho^2(x)/M_{DM}^2 < \sigma v > < \sigma v > \sim 3 \ x \ 10^{-26} \ cm^2 s^{-1}$

- Changes in <σv>
- Density fluctuations in DM substructure
- Sommerfield enhancements

Default Model Predictions

- Our default model shows a morphology which falls off much faster as a function of latitude than the observed haze
- Similar underestimates as in Fermi Haze?
- The WMAP haze requires large boost factors

 Without diffusion, the DM profiles actually suggest a much flatter distribution

 Diffusion plays <u>counterintuitive</u> role of increasing the falloff in emission at high latitudes

• We test four diffusion parameters:

- Diffusion Constant (D₀)
 - Ability of charged particles to move through galaxy
 - Can be thought of as the "thickness" of the soup the particles move through
- Simulation height (z)
- Alfvén Velocity (v_{α})
- Convection Velocity

- We test four diffusion parameters:
 - Diffusion Constant (D₀)
 - Simulation height (z)
 - Height of zone which particles move through before they exit the "soup" of the galaxy
 - Alfvén Velocity (v_{α})
 - Convection Velocity

- We test four diffusion parameters:
 - Diffusion Constant (D₀)
 - Simulation height (z)
 - Alfvén Velocity (v_{α})
 - Diffusion of particles through momentum space
 - Reacceleration of particles
 - Convection Velocity

- We test four diffusion parameters:
 - Diffusion Constant (D₀)
 - Simulation height (z)
 - Alfvén Velocity (v_{α})
 - Convection Velocity
 - Cosmic "wind" pushing particles out of the galaxy

 The diffusion constant and Alfvén velocity greatly affect the Haze morphology

Constraints on Diffusion

- Changes in the diffusion setup will affect the ratio of cosmic ray primary to secondary species
- This allows changes in the diffusion setup to be constrained by local cosmic ray observations

Constraints on Diffusion

DM Profiles

Only profile which brings a reasonable match to the WMAP haze is a Burkert profile

Profiles with dense galactic centers are unable to recreate the haze

Magnetic Field Models

Magnetic fields are an important uncertainty in our models

WMAP Matches?

- We have two possible matches to the morphology of the WMAP haze:
 - Changes in the magnetic field distribution (Flat magnetic field)
 - Changes in the DM density distribution (Burkert profile)
- Changes in the diffusion parameters have been ruled out by cosmic ray constraints

Expected Fermi signals from our "matching" profiles

ICS

Conclusions

- Standard Dark Matter/Diffusion setups do not provide a reasonable match to the WMAP haze
- Diffusion setups that would match the WMAP haze are well constrained by cosmic ray observations
- DM profiles which would move annihilations to higher latitudes are well constrained by Fermi observations

Magnetic field models are a major uncertainty

Very large backgrounds can be hiding inside the Fermi signal

 Uncertainties in astrophysical backgrounds make difficult to distinguish between signals

 Studying anisotropies allow us to pick small backgrounds out of large foreground signals

Hensley, Siegal-Gaskins, Pavlidou (2009)

Measurements of the anisotropy as a function of energy allow us to differentiate between different source classes

Siegal-Gaskins and Pavlidou (2009)

Starforming Galaxies -Ando and Pavlidou (2009)

Extragalactic DM Cuoco et al. (2008)

Conclusions

- I.) While the spectrum and intensity of the Fermi haze is systematically uncertain due to foreground templates, there does appear to be an anomolous foreground
- 2.) Uncertainties in astrophysical templates make it very difficult to understand these anomolies
- 3.) New methods will be necessary to understand these observations

EXTRA SLIDES

Matching the Fermi Haze

Liu et al. (2010)

Matching the Fermi Haze

Liu et al. (2010)

The Fermi Sky

2.0 GeV < E < 5.0 GeV

Dobler et al (2009) produced skymaps of the Fermi diffuse emission

This skymaps come from many classes –

Results

- Haze template effectively eliminates the morphology of the residual
- Residual now appears to be random noise

Matching this spectrum

- Nevertheless, it is worth testing whether we can match this spectrum with new electron inputs (specifically dark matter)
- We employ Galprop models including a dark matter contribution, and determine the morphology of the output WMAP spectrum

Matching this spectrum

- Nevertheless, it is worth testing whether we can match this spectrum with new electron inputs (specifically dark matter)
- We employ Galprop models including a dark matter contribution, and determine the morphology of the output WMAP spectrum