Tim Linden Precision Cosmic-Ray Searches with AMS-02

THE OHIO STATE UNIVERSITY

CENTER FOR COSMOLOGY AND ASTROPARTICLE PHYSICS

AMS has collected

145,449,075,035

cosmic ray events

Last update: September 21, 2019, 4:07 PM

RESEARCH **NEWS & EVENTS** DISCOVER

With Great Precision Comes **Great Responsibility**

Tim Linden **Precision Cosmic-Ray Searches with AMS-02**

THE OHIO STATE UNIVERSITY

CENTER FOR COSMOLOGY AND ASTROPARTICLE PHYSICS

10 Rigidity (GV)

Topic 1: Dark Matter

Topic 2: Solar Physics

The Present

The Present

slide concept courtesy of Asher Berlin

M_{DM} > M_{UFD}

The Present

R_{DM} > R_{UFD}

slide concept courtesy of Asher Berlin

courtesy: Tim Tait

M_{DM} > M_{UFD}

Thermal Dark Matter

Thermal Dark Matter Density

Present density inversely proportional to the strength of the interaction.

Almost independent of particle mass.

Weak-Interaction Produces the right density!

Thermal Dark Matter Density

Present density inversely proportional to the strength of the interaction.

Almost independent of particle mass.

Weak-Interaction Produces the right density!

10 MeV - 100 TeV!

Lee, Weinberg (1977; PRL 39 4) Ho, Scherrer (2012; 1208.4347)

Years after the Big Bang

Years after the Big Bang

Local Dark Matter Density

Thermal Cross-Section (Early Universe)

Dark Matter Mass (?)

Convection of Annihilation Products from GC (Winds?)

Local Dark Matter Density

Thermal Cross-Section (Early Universe)

Hadronic Component of Dark Matter Final State

Convection of Annihilation Products from GC (Winds?)

Local Gas Density

Local Supernova Rate

Local Dark Matter Density

Thermal Cross-Section (Early Universe)

Leptonic Component of Dark Matter Final State

Convection of Annihilation Products from GC (Winds?)

Local Dark Matter Density

Thermal Cross-Section (Early Universe)

Leptonic Component of Dark Matter Final State

Convection of Annihilation Products from GC (Winds?)

Pulsar Birth Rate

e⁺e⁻ Acceleration Efficiency in Pulsar Magnetospheres

NFW Profile (Mass of Milky Way)

Thermal Cross-Section (Early Universe)

Dark Matter Mass (?)

Annihilation Final State (?)

NFW Profile (Mass of Milky Way)

Thermal Cross-Section (Early Universe)

Dark Matter Mass (?)

Annihilation Final State (?)

Milky Way Star-Formation Rate (Galactic Dynamics)

Diffusion Constant in Galactic Center (Hydrodyanmics)

Activity of Supermassive Blackhole (?)

SMBH Accretion Efficiency (Magnetohydrodynamics)

Blazar Acceleration Mechanisms (Leptonic? Hadronic?)

Radio Galaxy Emission Models

Star-Formation Rates in Starburst Galaxies

 10^{-7}

SMBH Accretion Efficiency (Magnetohydrodynamics)

Blazar Acceleration Mechanisms (Leptonic? Hadronic?)

Radio Galaxy Emission Models

Star-Formation Rates in Starburst Galaxies

dSph Proximity

Substructure Models

Milky Way Merger History

•

.

 10^{-7}

Extragalactic Dark Matter Density

Thermal Cross-Section (Early Universe)

e+e- Energy Fraction in Dark Matter Annihilation

Intergalactic Magnetic Fields

Extragalactic Dark Matter Density Thermal Cross-Section (Early Universe) e+e- Energy Fraction in Dark Matter Annihilation **Intergalactic Magnetic Fields**

Radio Luminosity in Starbursts and AGN

e+e- Reacceleration in Cluster Mergers

Redshift Dependence of Signal vs. CMB

Small Dark Matter Signal Small Astrophysical Background

Small Dark Matter Signal Large Astrophysical Background

Fraction of Dark Matter Flux

Anti-Nuclei

Gamma-Rays / Positrons

Antiprotons

Fraction of Dark Matter Flux

Thermal WIMPs and the Story of Tantalus

Thermal WIMPs and the Story of Tantalus

Fit to Data The Positron Excess 10² positron, electron energy [GeV] 10

Key Idea: Investigate the Positron Fraction!

Dark Matter Mass (GeV)

Key Idea: Investigate the Positron Fraction!

Harding & Ramaty (ICRC! 1987)

Simulations indicate that pulsars accelerate a significant e⁺e⁻ population.

But what is the pulsar e⁺e⁻ efficiency?

How many e⁺e⁻ escape the pulsar magnetosphere and pulsar wind nebula?

Philippov et al. (2015; 1412.0673)

Simulations indicate that pulsars accelerate a significant e⁺e⁻ population.

But what is the pulsar e⁺e⁻ efficiency?

How many e⁺e⁻ escape the pulsar magnetosphere and pulsar wind nebula?

%. A quantitative discussion of plausible values for $f_{e^{\pm}}$ was recently given in Ref. [38]. We shall not review their discussion here, but Ref. [38] argues (see in particular their very informative App. B and C) that in the context of a standard model for the pulsar wind nebulae, a reasonable range for $f_{e^{\pm}}$ falls between 1% and 30%.

Profumo (2008, 0812.4457)

Philippov et al. (2015; 1412.0673)

SNR (hadronic/leptonic)

TeV Halo (escaped e⁺e⁻)

PWN (confined e⁺e⁻)

Ο

SNR (hadronic/leptonic)

TeV Halo (escaped e⁺e⁻)

PWN (confined e⁺e⁻)

SNR (hadronic/leptonic)

TeV Halo (escaped e⁺e⁻)

PWN (confined e⁺e⁻)

HAWC Collaboration (1711.06223)

D ₁₀₀ (Diffusion coefficient of 100TeV electrons from joint fit of two PWNe)	[x10 ²⁷ cm ² /sec]	4.5 ± 1.2	4.5 =
D ₁₀₀ (Diffusion coefficient of 100TeV electrons from individual fit of PWN)	[x10 ²⁷ cm ² /sec]	$3.2^{+1.4}_{-1.0}$	15

Global Problems

Local Problems

$$igg(rac{200\,\mathrm{pc}}{z_\mathrm{MW}}igg),$$

Home

Source Name:	HAWC J0543+233
Source Type:	Gal TeVHalo
Distance:	z=0.0
GLON:	184.4300
GLAT:	-3.3706

Map Projections -

RegExp Searc	ch				
× TeVHalo					
Filter by Obser	ver				
	Reset	Table Co	lumns 🗸	Sync To Map	Filte
	1	1	1	1	
Name	RA 🔺	Dec	Type Tags	Distance	Catalog
HAWC J0543+233	05 43 07.2	+23 24 00	Gal,TeVHalo	z=0.0	Newly A
Geminga	06 32 28	+17 22 00	Gal,SNR,P	0.25 kpc	Default
HAWC J0635+070	06 34 50.4	+07 00 00	UNID,TeVH	z=0.0	Newly A
2HWC J0700+143	07 00 28.8	+14 19 12	Gal,TeVHalo	z=0.0	Default
Vela X	08 35 00	-45 36 00	Gal,SNR,P	0.29 kpc	Default
HESS J1825-137	18 25 49	-13 46 35	Gal,SNR,P	3.9 kpc	Default

Select Catalogs -

HAWC source	PSR name	\dot{E}	Age $\left(\frac{P}{2\dot{P}}\right)$	Distance to	Distance between HAWC	HAWC source
		(erg/s)	(kyr)	Earth (kpc)	source and PSR [$^{\circ}$ (pc)]	extent (pc)
eHWC J0534+220	J0534+2200	4.5×10^{38}	1.3	2.00	0.03(1.05)	-
eHWC J1809-193	J1809-1917	1.8×10^{36}	51.3	3.27	0.05(2.86)	19.4
-	J1811-1925	6.4×10^{36}	23.3	5.00	0.40(34.9)	29.7
eHWC J1825-134	J1826-1334	2.8×10^{36}	21.4	3.61	0.26(16.4)	22.1
-	J1826-1256	3.6×10^{36}	14.4	1.55	0.45(12.2)	9.47
eHWC J1839-057	J1838-0537	6.0×10^{36}	4.89	2.0^{a}	0.10(3.50)	11.9
eHWC J1842-035	J1844-0346	4.2×10^{36}	11.6	2.40^{b}	0.49(20.5)	16.3
eHWC J1850+001	J1849-0001	9.8×10^{36}	42.9	7.00°	0.37 (45.2)	45.2
eHWC J1907+063	J1907+0602	2.8×10^{36}	19.5	2.37	0.29 (12.0)	21.5
eHWC J2019+368	J2021+3651	3.4×10^{36}	17.2	1.80	0.27(8.48)	6.28
eHWC J2030+412	J2032+4127	1.5×10^{35}	201	1.33	0.33(7.66)	4.18

The highest energy Galactic systems are all coincident with pulsars!

Supernova are also coincident with pulsars — more work remains to be done.

This can easily match the positron fraction

Some transport issues are possible - but easy to solve in models with inhomogeneous diffusion.

Exciting implications for our understanding of Galactic Diffusion!

Hooper et al. (2017; 1702.08436)

Jóhannesson (2019; 1903.05509)

Constraints on Leptonic Channels

The Antiproton Excess

The Antiproton Excess

Investigate the Antiproton Fraction!

Two Changes:

Ratio is much smaller (don't need to add antiprotons into denominator).

Hadronic Energy losses are slower (sensitive to antiproton production throughout the Galaxy)

The Antiproton Excess

Astrophysics - Smooth Profile

Dark Matter - Sharp Bump!

Giesen et al. (2015; 1504.04276)

The Antiproton Excess Secondary Acceleration in SNR

Cosmic-Ray Antiprotons created inside of supernova remnants are reaccelerated by the SNR shock.

Obtain the same spectrum as the proton spectrum.

Effect most important at high energies, where the galactic cosmic-ray confinement time is smallest.

Hint of Excess in ~5 GeV antiprotons!

Astrophysical Uncertainties can significantly affect the signal.

1000

Two papers simultaneously find an excess in the AMS-02 Antiproton Data!

Significance approaching (or past) 5σ !

Dark Matter Mass (GeV)

With great precision comes great responsibility:

Need to carefully examine the relevant uncertainties.

Cholis, Linden, Hooper (2019; 1903.02549)

With great precision comes great responsibility:

Galactic Primary to Secondary Ratios

Inhomogeneous Diffusion

Solar Modulation

Antiproton Production Cross-Section

Boudaud et al. (2019):

"AMS-02 antiprotons are consistent with a secondary astrophysical origin"

With great precision comes great responsibility:

Galactic Primary to Secondary Ratios

Inhomogeneous Diffusion

Solar Modulation

Antiproton Production Cross-Section

Cholis et al. (2019): antiproton excess"

"After accounting for these uncertainties, we confirm the presence of a 4.7σ

With great precision comes great responsibility:

Galactic Primary to Secondary Ratios

Inhomogeneous Diffusion

Solar Modulation

Antiproton Production Cross-Section

Cuoco et al. (2019): "The inclusion of correlations strongly improves the constraints on the propagation model and, furthermore, enhances the significance of the DM signal up to above 5σ."

Boudaud et al. (2019; 1906.07119)

He \bar{p}/p

 $0.062 \ 0.080 \ 0.30$

 $0.63 \quad 0.81 \quad 1.00$

p

dataset

lpha

Cuoco et al. (2019; 1903.01472)

He \bar{p}/p

 $0.079 \ 0.103 \ 0.30$

 $0.20 \quad 0.21 \quad 1.00$

p

p

With great precision comes great responsibility:

Galactic Primary to Secondary Ratios

Inhomogeneous Diffusion

Solar Modulation

Antiproton Production Cross-Section

Galactic Primary to Secondary Ratios - Future AMS-02 Data! Inhomogeneous Diffusion - TeV Halos Solar Modulation - Voyager Data, Time-Dependent AMS-02 Data **Antiproton Production Cross-Section - LHCb / Laboratory Experiments**

$b\bar{b}$ (Planck)

Cholis, Hooper, TL (2019; 1903.02549)

 $b\bar{b}$ (AMS)

100 Dark Matter Mass (GeV)

Aur # 1

.

Sector Sector

Dwarfs (Fermi)

Thermal Cross-Section

Antiproton (AMS)

100

Dark Matter Mass (GeV)

Dwarfs (Fermi)

Thermal Cross-Section

Antiproton (AMS)

100

Dark Matter Mass (GeV)

Dark Matter Mass (GeV)

Dwarfs (Fermi)

Thermal Cross-Section

Antiproton (AMS)

100

Dwarfs (Fermi)

Thermal Cross-Section

Antiproton (AMS)

Dark Matter Mass (GeV)

Astrophysics

Instrumental

Dwarf Galaxies

Astrophysics

Dwarf Galaxies

Galactic Center

Dwarf Galaxies

Galactic Center

Statistics

Antihelium

Antiprotons

Galli et al. (2009; 0905.0003) see also: <u>astro-ph/0210617</u>, 0810.5952)

Dark Matter Mass (GeV)

Dark Matter Mass (GeV)

 10^{5}

Topic 2: Solar Physics

Producing Solar Gamma-Rays

Solar Flares and Reconnection events.

Strong Radio Blackout 10 Sep 17 at 1606 UTC

PRIMARY AREA of IMPACTS Large portions of sunlit side of Earth

POSSIBLE EFFECTS

HF Radio: Wide area of blackouts; loss of contact for up to an hour over sunlit side of Earth Navigation: Low frequency communication degraded for about an hour

Milky Way plane

Vela pulsar

 \sim ப

6

 \sim ∞ 3

991Ap.

1

© 1991. The American Astronomical Society. All rights reserved. Printed in U.S.A.

SIGNATURES OF COSMIC-RAY INTERACTIONS ON THE SOLAR SURFACE

D. SECKEL, TODOR STANEV, AND T. K. GAISSER Bartol Research Institute, University of Delaware, Newark, DE 19716 Received 1991 March 21; accepted 1991 June 5

We estimate the fluxes of neutrinos, gamma rays, antiprotons, neutrons, and antineutrons that result from collisions of high-energy Galactic cosmic rays with the solar atmosphere. The results are sensitive to assumptions about cosmic-ray transport in the magnetic fields of the inner solar system. The high-energy photon flux should be observable by the Gamma Ray Observatory. The neutrino flux should produce less than one event per year in the next generation of neutrino telescopes. The antiproton flux is unobservable against the Galactic background. The neutron and antineutron fluxes are detectable only if neutrons produced in terrestrial cosmic-ray events may be discriminated against.

Subject headings: cosmic rays: general — gamma rays: general — neutrinos — Sun: activity

1. INTRODUCTION

appropriate thickness to generate high-energy photons without reabsorbing them. The high-energy cascade products The interactions of high-energy cosmic-ray nuclei with would then be suppressed from the naive value by an amount matter have been studied in a variety of settings. In our own of order $h_{\oplus}/R_{\oplus} \sim 10^{-3}$, where h_{\oplus} is the scale height of Earth's atmosphere, these interactions produce cascades which atmosphere, and R_{\oplus} is Earth's radius. Although we will argue include, or in turn produce, detectable fluxes of electrons, positrons, muons, gamma rays, Čerenkov light, neutrons and other otherwise, one might worry that a similar suppression occurs for the Sun. nuclear fragments, and neutrinos. Interactions with interstellar Third, to calculate fluxes from the Sun, one must take into gas are thought to produce the observed Galactic flux of γ -rays account the details of the solar atmosphere. For example, (Mayer-Hasselwander et al. 1982; Fichtel & Kniffen 1984; typical cascades will take place in a less dense environment Fichtel et al. 1977) with energies above ~ 500 MeV, antithan for Earth, and that increases the yields of some byprotons (Stephens & Golden 1987), and positrons (Protheroe 1982). In this paper we explore another place where interproducts. actions between cosmic-ray nuclei and gas may produce observ-Despite these uncertainties, it is possible to make some quick estimates of the fluxes of by-products. The total cosmic-ray able signals: the Sun.

At first, the Sun may seem an inappropriate source. Although nearby, it covers a fairly small fraction of the sky:

ABSTRACT

flux of nucleons above 1 GeV is $I_{cr}(E > 1 \text{ GeV}) \simeq 1 \text{ cm}^{-2} \text{ s}^{-1}$ sr^{-1} . Absorbing this primary flux on the solar disk and reemit-

Intensity Spectrum

Intensity Spectrum Time Variability
 X

Intensity Spectrum Time Variability Morphology

X

Time (UTC)	Energy	R.A.	Dec	Solar Distance	Event Class	PSF Class	Edisp Class	P6	P7	BG Contri
2008-11-09 03:47:51	212.8 GeV	224.497	-16.851	0.068°	UltraCleanVeto	PSF0	EDISP3	\checkmark	\checkmark	0.000
2008-12-13 03:25:55	139.3 GeV	260.707	-23.243	0.126°	UltraCleanVeto	PSF2	EDISP1	X	Χ	0.000
2008-12-13 07:04:07	103.3 GeV	260.346	-23.102	0.399°	UltraCleanVeto	PSF0	EDISP2	X	Χ	0.000
2009-03-22 08:43:13	117.2 GeV	1.337	0.703	0.255°	UltraCleanVeto	PSF1	EDISP3	\checkmark	\checkmark	0.0002
2009-08-15 01:14:17	138.5 GeV	144.416	14.300	0.261°	UltraCleanVeto	PSF2	EDISP3	\checkmark	\checkmark	0.0002
2009-11-20 07:55:20	112.6 GeV	235.905	-19.473	0.288°	UltraCleanVeto	PSF1	EDISP1	X	Χ	0.0002
2008-12-24 05:41:53	226.9 GeV	272.899	-23.343	0.069°	UltraClean	PSF1	EDISP3	X	X	0.0012
2009-12-20 08:06:31	467.7 GeV	268.046	-23.177	0.338°	UltraCleanVeto	PSF1	EDISP0	X	Χ	0.002

Intensity Spectrum **Time Variability** Morphology **Spectral Variability**

X

Intensity Spectrum **Time Variability** Morphology **Spectral Variability** Spectral Dip

Oh wait... that's basically everything.

Producing Solar Gamma-Rays

Producing Solar Gamma-Rays

The Antiproton Excess - A Detection?

With great precision comes great responsibility:

Galactic Primary to Secondary Ratios

Inhomogeneous Diffusion

Solar Modulation

Antiproton Production Cross-Section

Galactic Primary to Secondary Ratios - Future AMS-02 Data! Inhomogeneous Diffusion - TeV Halos Solar Modulation - Voyager Data, Time-Dependent AMS-02 Data **Antiproton Production Cross-Section - LHCb / Laboratory Experiments**

Galli et al. (2009; 0905.0003) see also: <u>astro-ph/0210617</u>, 0810.5952)

Dark Matter Mass (GeV)

Dark Matter Mass (GeV)

 10^{5}

Producing Solar Gamma-Rays

The Antiproton Excess - A Detection?

With great precision comes great responsibility:

Galactic Primary to Secondary Ratios

Inhomogeneous Diffusion

Solar Modulation

Antiproton Production Cross-Section

Galactic Primary to Secondary Ratios - Future AMS-02 Data! Inhomogeneous Diffusion - TeV Halos Solar Modulation - Voyager Data, Time-Dependent AMS-02 Data **Antiproton Production Cross-Section - LHCb / Laboratory Experiments**

Extra Slides