Cosmic-Ray Positrons Strongly Constrain Leptophilic Dark Matter

Observations of antimatter cosmic-rays have long been considered powerful probes of dark matter annihilation -- as they are produced copiously in dark matter interactions but are only produced through secondary processies supernovae explosions. Observations by the PAMELA, and then AMS-02 satellites found a significant excess in high-energy cosmic-ray positrons, a signal which attracted significant interest from the dark matter community, but has been more successfully explained through the emission of e+e- pairs by high-energy pulsars throughout the Milky Way. Here, we note that -- in scenarios where pulsars dominate the high-energy positron flux -- the smoothness of the positron flux can be used as a powerful probe of sub-dominant dark matter contributions. This is particularly true for leptophilic dark matter models that produce significant bumps in the cosmic-ray positron spectrum. Using recently released AMS-02 data, we set strong cosntraints on dark matter annihilation to e+e-, mu+mu- and tau+tau- final states - producing limits which fall far below the thermal annihilation cross-section in many standard models.

Read More
Dark Matter Microhalos in the Solar Neighborhood: Pulsar Timing Signatures of Early Matter Domination

The impressive regularity of pulsating neutron stars allow them to be used as extremely acurate "clocks" that operate on Myr or even Gyr timescales. Pulsar timing arrays have taken repeated observations of nearby MSPs over 20 Myr, looking for small deviations which may be due to local gravitational effects affecting either the neutron star environment or local solar neighborhood. We note that these arrays are quickly becoming sensitive to the enhanced dark matter substructure that is expected when the universe goes through a period of Early Matter Domination before the onset of radiation domination during big-bang nucleosynthesis. Current, or near-future, observations (20 years with approximately 70 pulsars), could begin to constrain novel EMDE parameter space -- while future studies including 200 pulsars over 40 years could raise the minimum energy floor for early matter domination as high as 150 MeV.

First Analysis of Jupiter in Gamma Rays and a New Search for Dark Matter

Despite being observed at optical wavelengths since time immemorial, Jupiter has never been directly studied in GeV gamma-rays. This is, of course, primarily an instrumental challenge -- but also due to the fact that Jupiter is not expected to be a bright GeV gamma-ray source. However, the proximity of Jupiter, combined with the spectacular exposure of the Fermi-LAT, means that Jupiter observations may spark a new frontier in astrophysical studies. Additionally, we show that dark matter models which annihilate through a light mediator may produce a significant Jovian gamma-ray flux, allowing us to test dark matter models inaccessible to any other study. Utilizing 11 years of Fermi-LAT data, and a detailed methodology for removing astrophysical backgorunds, we set strong limits on the Jupiter gamma-ray flux, but potentially find exciting evidence for a signal below 15 MeV. The nature of this signal will require upcoming MeV instruments, like AMEGO or e-ASTROGAM to verify. Using the strong upper limit on the gamma-ray flux above 20 MeV, we strongly constrain dark matter annihilation through light mediators, producing limits that exceed previous studies by several orders of magnitude.

Gamma-Rays from Star Forming Activity Appear to Outshine Misaligned Active Galactic Nuclei

The Isotropic Gamma-Ray Background (IGRB) -- produced from the total gamma-ray sources which are too dim to be individually detected -- provides an important diagnostic to constrain the energetics of the high-energy universe. Anisotropy and variability studies have placed strong constraints on GRB and blazar jet contributions to the IGRB. The most important contributions are likely to be a combination of gamma-rays from star-forming activity (e.g., SFGs) and hadronic emission from blazars with jets that are not oriented towards Earth (mAGN). Previous studies have attempted to determine the importance of each channel by correlating their gamma-ray emission against their multiwavelength emission. These studies have obtained disparate results, partially because these studies have not carefully considered "composite" galaxies where both star-formation and mAGN activity is important. We perform the first joint-likelihood analysis that includes both components simultaneously, finding that SFGs are likely the most important contributor to the IGRB, and their contribution remains sizable despite uncertainties in the mAGN contribution.

Evidence of TeV Halos Around Millisecond Pulsars

Observations over the last few years have detected bright, spatially extended gamma-ray emission (TeV halos) around young and middle-aged pulsars throughout the Milky Way. This brings forth the question of whether the ancient population of millisecond pulsars -- much more numerous but individually less luminous -- also produce TeV halo activity. Unfortunately, if we expect that MSPs are equally efficient at producing TeV halos (compared to their spindown power) as young and middle-aged pulsars, none of these systems is expected to be bright enough to be individually detected by HAWC. However - they are close! In order to enhance the sensitivity of HAWC, we produce a "stacked" joint-likelihood analysis of the 37 MSPs with the highest expected spindown-flux (spindown-power divided by distance squared), and fit this population with a Geminga-like TeV halo model. We find that this method improves the quality of fit to the HAWC data by 4.24 sigma. However, the HAWC backgorunds are not Poissonian. If we re-fit this data by comparing our model with studies of "blank-sky" locations where no TeV halo emission is expected, we find the significance decreases, but is still approximately 2.5 sigma. Stay Tuned!

Celestial-Body Focused Dark Matter Annihilation

Dark Matter searches traditionally proceed through either direct methods (searching for dark matter scattering with standard model particles), or through indirect methods (through dark matter annihilation into standard model particles). We propose a new phenomenology which produces a detectable signal through a combination of dark matter scattering and annihilation. Dark Matter particles in the galaxy scatter with celestial bodies (most importantly brown dwarfs and neutron stars). They become trapped inside these objects and their density incrases, promoting dark matter annihilation. If this annihilation proceeds through a light-mediator capable of escaping the compact object, the subsequent decay of this mediator into standard model particles can produce a detectable signature similar to standard annihilation. However, the morphology and amplitude of the signal have detectable differences, because the annihilation rate depends on the rate of dark matter capture. We show that current constraints from gamma-ray telescopes can place strong limits on the dark matter scattering cross-section in these models, outperforming both standard direct detection experiments and previous searches of Solar gamma-ray emission.

Pulsars Power Energetic HAWC Sources

>Recently, HAWC has released a catalog of 9 sources with detected emission above 56 TeV. We show that all of these sources are most likely powered by leptonic (rather than hadronic) processes. The most likely source of the high-energy emission is the young pulsar found near the position of each source. Three distinct observations prefer our hadronic interpretation: (1) the luminosity of each source is consistent with an approximately 10% conversion of spindown power into e+e- acceleration, similar to values found for older pulsars such as Geminga and Monogem, (2) a spectral cutoff is observed in each source at energies near 10 TeV, an effect which is naturally explained by the transition from the uncooled to cooled electron spectrum, the position of which can be directly calculated from the known pulsar age, (3) hadronic emission modles generically predict far too much GeV emission from each source (compared to flux constraints from Fermi-LAT observations). Our results have significant implications for the sources of the positron excess, and the existence of galactic PeVatrons.

Solar Disk Gamma-Rays

The Sun is one of the brightest gamma-ray sources in the sky. Here we use new Fermi-LAT observations (covering more than 11.5 years of data) to constrain the intensity, spectrum, morphology, and time-variability of gamma-ray emission from the solar disk. Utilizing a novel and advanced background subtraction technique, we obtain percent level precision in observations spanning the energy range 100 MeV to 100 GeV. We uncover several exciting results, including strong evidence for an 11 year solar variability timescale (corresponding to the solar cycle) and strong constraints on an energy-dependence in the amplitude of this correlation. The latter result indicates that strong forces near teh solar surface, rather than modulation throughout the heliosphere, is primarily responsible for the time-dependence of the gamma-ray emission.

Antiheliums from Dark Matter

AMS-02 has tentatively detected approximately 10 anti-Helium 3 nuclei. Such an observation would constitute smoking gun evidence of new physics, because the astrophysical production of antihelium is expected to be negligible. However, most studies of dark matter annihilation have concluded that the dark matter induced antihelium flux should also be small. Here, we carefully analyze previous studies, and discover a antihelium production pathway which had been neglected by previous literature -- the displaced vertex decays of Lambda-bottom antibaryons. The optimal mass (roughly 6 proton masses) and anti-baryon number of Lambda_baryons make them optimal candidates to efficiently produce antihelium nuclei. Intriguingly, standard particle physics codes (e.g, Pythia) predict that this pathway should dominate the production of detectable antihelium, increasing the standard antihelium production rate of dark matter annihilation by nearly a factor of 100 compared to previous computations.

Constraining Solar Modulation

A critical uncertainty in understanding cosmic-rays in our Galaxy is that the cosmic-rays we can observe in our solar system are not representative of the galactic cosmic-ray population. To make it to Earth, cosmic-rays must first fight against the magnetic field and charged wind produce by the Sun -- losing energy in a time-dependent, charge-dependent, and rigidity-dependent way. Fortunately, because the cosmic-ray population in interstellar space is constant in time, and the effects induced by the Sun oscillate wildly (even on daily timescales), we can separate these effects and constrain the impact of solar modulation on the observed cosmic-ray population. We use this to better constrain the cosmic-ray population in the interstellar medium, which is a key observable in searches for dark matter or other new physics.

MSPs and the Radio/FIR Correlation

Observations over several decades have established a strong correlation between the far-infrared and non-thermal radio luminosities of star-forming galaxies. Because far-IR emission is produced primarily by massive stars, and non-thermal radio emission primarily by cosmic-ray electrons, this relationship is interpreted as observational evidence for the production of high-energy cosmic-rays by recent star-formation events. Intriguingly, this relation continues over more than four magnitudes in star-formation rate. Recent LOFAR observations, however, find an intriguing radio excess among galaxies with high stellar masses and low-star formation rates -- a result which apperas at odd with star-formation models of the cosmic-ray population. We propose that millisecond pulsars -- which evolve over Gyr timescales and thus trace historic star-formation, can contribute to, or even dominate, the radio flux from these dead galaxies. Such an observation has important implications for our understanding of stellar evolution, as well as cosmic-ray production within the bulge of the Milky Way and other nearby galaxies.

Antihelium from Dark Matter

AMS-02 has reported the tentative detection of approximately a dozen anti-Helium 3 and anti-Helium 4 nuclei. Astrophysical interactions capable of making high-energy anti-nuclei are kinematically suppressed, making such a signal a potential smoking gun for dark matter annihilation. Unfortunately, it is also extremely difficult to explain such a signal with dark matter models either, due to the very small range of coalescence momenta that is capable of producing such particles. We present a new astrophysical method for enhancing the dark matter induced anti-Helium flux, by using Alfven waves to reaccelerate very low-energy anti-Helium particles to higher energies, where they may be more readily detected by AMS-02.

Full Publication List:

89. Dark Matter Microhalos in the Solar Neighborhood: Pulsar Timing Signatures of Early Matter Domination"
Sten Delos, Tim Linden
To Be Submitted

88. Cosmic-Ray Positrons Strongly Constrain Leptophilic Dark Matter"
Isabelle John, Tim Linden
Submitted to JCAP

87. Response to Comment on: "Dark Matter Annihilation Can Produce a Detectable Antihelium Flux through Λb Decays"
Martin Winkler, Tim Linden
Submitted to PRL

86. Gamma-Rays from Star Forming Activity Appear to Outshine Misaligned Active Galactic Nuclei
Carlos Blanco, Tim Linden
To Be Submitted

85. First Analysis of Jupiter in Gamma Rays and a New Search for Dark Matter
Rebecca Leane, Tim Linden
To Be Submitted

84. Evidence of TeV Halos Around Millisecond Pulsars
Dan Hooper, Tim Linden
Submitted to PRD

83. Celestial-Body Focused Dark Matter Annihilation Throughout the Galaxy
Rebecca Leane, Tim Linden, Payel Mukhopadhyay, Natalia Toro
Accepted by PRD

82. The Highest Energy HAWC Sources are Leptonic and Powered by Pulsars
Takahiro Sudoh, Tim Linden, Dan Hooper
Acepted by JCAP

81. First Observations of Solar Disk Gamma Rays over a Full Solar Cycle
Tim Linden, John Beacom, Annika Peter, Benjamin Buckman, Bei Zhao, Guanying Zhu
Submitted to PRD

80. Constraining the Charge-Sign and Rigidity-Dependence of Solar Modulation
Ilias Cholis, Dan Hooper, Tim Linden
Submitted to PRD

79. Dark Matter Annihilation Can Produce a Detectable Antihelium Flux through Λb Decays
Martin Wolfgang Winkler, Tim Linden
Physical Review Letters 126 101101

78. Millisecond Pulsars Modify the Radio-SFR Correlation in Quiescent Galaxies
Takahiro Sudoh, Tim Linden, John Beacom
Accepted by PRD

77. Anti-Deuterons and Anti-Helium Nuclei from Annihilating Dark Matter
Ilias Cholis, Tim Linden, Dan Hooper
Physical Review D 102 103019

76. Breaking a Dark Degeneracy: The gamma-ray signature of early matter domination
M. Sten Delos, Tim Linden, Adrienne Erickcek
Physical Review D 100 123546

75. Cosmic Rays and Magnetic Fields in the Core and Halo of the Starbust M82: Implications for Galactic Wind Physics
Benjamin Buckman, Tim Linden, Todd Thompson
Monthly Notices of the Royal Astronomical Society 494 2679

74. A Robust Method for Treating Astrophysical Mismodeling in Dark Matter Annihilation Searches of Dwarf Spheroidal Galaxies
Tim Linden
Physical Review D 043017

73. A Robust Excess in the Cosmic-Ray Antiproton Spectrum: Implications for Annihilating Dark Matter
Ilias Cholis, Tim Linden, Dan Hooper
Physical Review D 99 103026

72. TeV Halos are Everywhere: Prospects for New Discoveries
Takahiro Sudoh, Tim Linden, John Beacom
Physical Review D 100 043016

71. Active Galactic Nuclei and the Origin of IceCube’s Diffuse Neutrino Flux
Dan Hooper, Tim Linden, Abby Vieregg
Journal of Cosmology and Astroparticle Physics 02 012

70. Constraints on Spin-Dependent Dark Matter Scattering with Long-Lived Mediators from TeV Observations of the Sun with HAWC
HAWC Collaboration
Physical Review D 98 123012

69. First HAWC Observations of the Sun Constrain Steady TeV Gamma-Ray Emission
HAWC Collaboration
Physical Review D 98 123011

68. Self-Generated Cosmic-Ray Confinement in TeV Halos: Implications for TeV γ-ray Emission and the Positron Excess
Carmelo Evoli, Tim Linden, Giovanni Morlino
Physical Review D 98 063017

67. Evidence for Cosmic-Ray Escape in the Small Magellanic Cloud using Fermi Gamma-rays
Laura Lopez, Katie Auchettl, Tim Linden, Alberto Bolatto, Todd Thompson, Enrico Ramirez-Ruiz
The Astrophysical Journal 867 44

66. An Unexpected Dip in the Solar Gamma-Ray Spectrum
Qing-Wen Tang, Kenny Ng, Tim Linden, Bei Zhou, John Beacom, Annika Peter
Physical Review D, 98 063019

65. Millisecond Pulsars, TeV Halos, and Implications for the Galactic Center Gamma-Ray Excess
Dan Hooper, Tim Linden
Physical Review D 98 043005

64. Evidence for a New Component of High-Energy Solar Gamma-Ray Production
Tim Linden, Bei Zhou, John Beacom, Annika Peter, Kenny Ng, Qing-Wen Tang
Physical Review Letters 121 131103

63. The Radio Synchrotron Background: Conference Summary and Report
Jack Singal, Jibran Haider et. al. (including Tim Linden)
Publications of the Astronomical Society of the Pacific, 130 985

62. Measuring the Local Diffusion Coefficient with HESS Observations of High-Energy Electrons
Dan Hooper, Tim Linden
Physical Review D 98 083009

61. Comment on "Characterizing the Population of Pulsars in the Galactic Bulge with the Fermi Large Area Telescope" [arXiv: 1705.00009v1]
Richard Bartels, Dan Hooper, Tim Linden, Siddharth Mishra-Sharma, Nick Rodd, Ben Safdi, Tracy Slatyer
Physics of the Dark Universe 20 88 2018

60. Pulsar TeV Halos Explain the TeV Excess Observed by Milagro
Tim Linden, Ben Buckman
Physical Review Letters 120 121101

59. Searching for Dark Matter with Neutron Star Mergers and Quiet Kilonovae
Joe Bramante, Tim Linden, Yu-Dai Tsai
Physical Review D 97 055016

58. TeV Gamma Rays from Galactic Center Pulsars
Dan Hooper, Ilias Cholis, Tim Linden
Physics of the Dark Universe 21 40 2018

57. IceCube and HAWC Constraints on Very-High-Energy Emission from the Fermi Bubbles
Ke Fang, Meng Su, Tim Linden, Kohta Murase
Physical Review D 96 123007

56. Dark Kinetic Heating of Neutron Stars: An Infrared Window On WIMPs, SIMPs, and Higgsinos
Masha Baryakhtar, Joe Bramante, Shirley Li, Tim Linden, Nirmal Raj
Physical Review Letters 119 131801

55. Using HAWC to Detect Invisible Pulsars
Tim Linden, Katie Auchettl, Joseph Bramante, Ilias Cholis, Ke Fang, Dan Hooper, Tanvi Karwal, Shirley Li
Physical Review D 96 103016

54. HAWC Observations Strongly Favor Pulsar Interpretations of the Cosmic-Ray Positron Excess
Dan Hooper, Ilias Cholis, Tim Linden, Ke Fang
Physical Review D 96 103013

53. Evidence for the Stochastic Acceleration of Secondary Antiprotons by Supernova Remnants
Ilias Cholis, Dan Hooper, Tim Linden
Physical Review D 95 123007

52. Low Mass X-Ray Binaries in the Inner Galaxy: Implications for MSPs and the GeV Excess
Daryl Haggard, Craig Heinke, Dan Hooper, Tim Linden
Journal of Cosmology and Astroparticle Physics 1705 05 056

51. Star-Forming Galaxies Significantly Contribute to the Isotropic Gamma-Ray Background
Tim Linden
Physical Review D 96 083001

50. The Angular Power Spectrum of diffuse gamma-rays measured by Fermi and DM constraints
M. Fornasa, A. Cuoco, J. Zavala, J. Gaskins, M. Sanchez-Conde, G. Gomez-Vargas, E. Komatsu, Tim Linden, F. Prada, F. Zandenel, A. Morselli
Physical Review D 94, 123005

49. The Gamma-Ray Pulsar Population of Globular Clusters: Implications for the GeV Excess
Dan Hooper, Tim Linden
Journal of Cosmology and Astroparticle Physics 1608 08 018

48. Indirect Detection Constraints on s and t Channel Simplified Models of Dark Matter
Linda Carpenter, Russell Colburn, Jessica Goodman, Tim Linden
Physical Review D 94 055027

47. Radio Galaxies Dominate the High-Energy Diffuse Gamma-Ray Background
Dan Hooper, Tim Linden, Alejandro Lopez
Journal of Cosmology and Astroparticle Physics 1608 08 019

46. The High-Energy Tail of the Galactic Center Gamma-Ray Excess
Tim Linden, Nicholas Rodd, Benjamin Safdi, Tracy Slatyer
Physical Review D 94, 103013

45. Improved Cosmic-Ray Injection Models and the Galactic Center Gamma-Ray Excess
Eric Carlson, Tim Linden, Stefano Profumo
Physical Review D 94 063504

44. Is the Gamma-Ray Source J2212.5+0703 A Dark Matter Subhalo?
Bridget Bertoni, Dan Hooper, Tim Linden
Journal of Cosmology and Astroparticle Physics 1609 05 049

43. On the R-Process Enrichment of Dwarf Spheroidal Galaxies
Joseph Bramante, Tim Linden
The Astrophysical Journal 826 1 57

42. A Predictive Analytic Model for the Solar Modulation of Cosmic Rays
Ilias Cholis, Dan Hooper, Tim Linden
Physical Review D 93 4 043016

41. Putting Things Back Where They Belong: Tracing Cosmic-Ray Injection with H2
Eric Carlson, Tim Linden, Stefano Profumo
Physical Review Letters 117 111101

40. Known Radio Pulsars Do Not Contribute to the Galactic Center Gamma-Ray Excess
Tim Linden
Physical Review D 93 6 063003

39. Cluster Mergers and the Origin of the ARCADE-2 Excess
Ke Fang, Tim Linden
Journal of Cosmology and Astroparticle Physics 1610 10 004

38. The Galactic Center GeV Excess from a Series of Leptonic Cosmic-Ray Outbursts
Ilias Cholis, Carmelo Evoli, Francesca Calore, Tim Linden, Christoph Weniger, Dan Hooper
Journal of Cosmology and Astroparticle Physics 1512 12 005

37. Examining the Fermi-LAT Third Source Catalog in Search of Dark Matter Subhalos
Bridget Bertoni, Dan Hooper, Tim Linden
Journal of Cosmology and Astroparticle Physics 1512 12 035

36. On the Gamma-Ray Emission from Reticulum II and Other Dwarf Galaxies
Dan Hooper, Tim Linden
Journal of Cosmology and Astroparticle Physics 1509 09 016

35. The Galactic Center Excess in Gamma-Rays from Annihilation of Self-Interacting Dark Matter
Manoj Kaplinghat, Tim Linden, Haibo Yu
Physical Review Letters, 114 211303

34. On the Formation of Ultra-Luminous X-Ray Sources with NS Accretors: The Case of M82-X2
Tassos Fragos, Tim Linden, Vicky Kalogera, Panos Sklias
The Astrophysical Journal Letters, 802 2041

33. The Anisotropy of the Extragalactic Radio Background from Dark Matter
Ke Fang, Tim Linden
Physical Review D 91 083501 (2015)

32. What Does the PAMELA Antiproton Spectrum Tell Us About Dark Matter?
Dan Hooper, Tim Linden, Philipp Mertsch
Journal of Cosmology and Astroparticle Physics 03 021 (2015)

31. Improving the Sensitivity to Dark Matter Annihilation in Dwarf Spheroidal Galaxies
Eric Carlson, Dan Hooper, Tim Linden
Physical Review D, 91 061302 (2015)

30. A Critical Reevaluation of Radio Constraints on Annihilating Dark Matter
Ilias Cholis, Dan Hooper, Tim Linden
Physical Review D, 91 083507 (2015)

29. Challenges in Explaining the Galactic Center Gamma-Ray Excess with Millisecond Pulsars
Ilias Cholis, Dan Hooper, Tim Linden
Journal of Cosmology and Astroparticle Physics, 06 043 (2015)

28. A New Determination of the Spectrum and Luminosity Function of Millisecond Pulsars
Ilias Cholis, Dan Hooper, Tim Linden
Submitted to PRD

27. The Circular Polarization of Pulsar Wind Nebulae and the Cosmic-Ray Positron Excess
Tim Linden
The Astrophysical Journal 799 200 (2015)

26. Detecting Dark Matter with Imploding Pulsars in the Galactic Center
Joseph Bramante, Tim Linden
Physical Review Letters, 113 191301

25. Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud
Alex Drlica-Wagner, German Gomez-Vargas, Jack Hewitt, Tim Linden, Luigi Tibaldo
The Astrophysical Journal, 790 24

24. Is the Ultra-High Energy Cosmic-Ray Excess Correlated with IceCube Neutrinos?
Ke Fang, Toshihiro Fujii, Tim Linden, Angela Olinto
The Astrophysical Journal, 794 126

23. The Characterization of the Gamma-Ray Signal from the Central Milky Way
Tansu Daylan, Doug Finkbeiner, Dan Hooper, Tim Linden, Stephen Portillo, Nicholas Rodd, Tracy Slatyer
Physics of the Dark Universe 12 2016 1

22. Antihelium from Dark Matter
Eric Carlson, Adam Coogan, Tim Linden, Stefano Profumo, Alejandro Ibarra, Sebastian Wild
Physical Review D, 89 076005

21. Tying Dark Matter to Baryons with Self-Interactions
Manoj Kaplinghat, Ryan Keeley, Tim Linden, Haibo Yu
Physical Review Letters, 113 021302 (2014)

20. Pulsars Cannot Account for the Inner Galaxy's GeV Excess
Dan Hooper, Ilias Cholis, Tim Linden, Jennifer Siegal-Gaskins, Tracy Slatyer
Physical Review D, 88 083009

19. A Clustering Analysis of the 130 GeV Gamma-Ray Feature
Eric Carlson, Tim Linden, Stefano Profumo, Christoph Weniger
Physical Review D, 88 043006

18. Probing the Pulsar Origin of the Positron Fraction with Atmospheric Cherenkov Telescopes
Tim Linden, Stefano Profumo
The Astrophysical Journal, 772 18

17. Ultraluminous X-Ray Sources in the Most Metal-Poor Galaxies
A. Prestwich, M. Tsantaki, A. Zezas, F. Jackson, T. Roberts, R. Foltz, Tim Linden, V. Kalogera
The Astrophysical Journal 769 2 92

16. Testing the WMAP-Planck Haze with Spiral Galaxies
Eric Carlson, Dan Hooper, Tim Linden, Stefano Profumo
Journal of Cosmology and Astroparticle Physics, 1307 026 (2013)

15. Chandra Observations of the Collisional Ring Galaxy NGC 922
A. Prestwich, J. Galache, Tim Linden, V. Kalogera, A. Zezas, T. Roberts, R. Kilgard, A. Wolter, G. Trinchieri
The Astrophysical Journal, 747 2 150

14. Are Lines from Unassociated Gamma-Ray Sources Evidence for Dark Matter Annihilation?
Dan Hooper, Tim Linden
Physical Review D, 86 8 083532

13. Exploring the Nature of the GC Gamma-Ray Source with the Cherenkov Telescope Array
Tim Linden, Stefano Profumo
The Astrophysical Journal, 760 23 7

12. Gamma-Rays in the Fermi-LAT Data: Is it a Bubble?
Stefano Profumo, Tim Linden
Journal of Cosmology and Astroparticle Physics, 007 011

11. The Morphology of Hadronic Emission Models for the Galactic Center
Tim Linden, Elizabeth Lovegrove, Stefano Profumo
The Astrophysical Journal, 753 1 41

10. The Isotropic Radio Background and Annihilating Dark Matter
Dan Hooper, Alexander Belikov, Tesla Jeltema, Tim Linden, Stefano Profumo, Tracy Slatyer
Physical Review D, 86 10 103003

9. Anisotropies in the Gamma-Ray Background Measured by the Fermi-LAT
The Fermi-LAT Collaboration: A. Cuoco, Tim Linden, N. Maziotta, J. Siegal-Gaskins, V. Vitale, E. Komatsu
Physical Review D, 85 8 083007

8. On The Rarity of X-Ray Binaries with Naked Helium Donors
Tim Linden, Francesca Valsecchi, Vicky Kalogera
The Astrophysical Journal, 748 2 114

7. Origin of Gamma-Rays from the Galactic Center
Dan Hooper, Tim Linden
Physical Review D, 84 12 123005

6. Dark Matter and Synchrotron Emission from Galactic Center Radio Filaments
Tim Linden, Dan Hooper, Farhad Yusef-Zadeh
The Astrophysical Journal, 741 2 95

5. Gamma-Rays from the Galactic Center and the WMAP Haze
Dan Hooper, Tim Linden
Physics Review D, 83 8 083517 (2011)

4. The Effect of Starburst Metallicity on Bright X-Ray Binary Formation Pathways
Tim Linden, Vicky Kalogera, Jeremy Sepinsky, Andrea Prestwich, Andreas Zezas, Jay Gallagher
The Astrophysical Journal, 725 2 1984

3. The Morphology of Dark Matter Synchrotron Emission with Self-Consistent Diffusion Models
Tim Linden, Stefano Profumo, Brandon Anderson
Physical Review D, 82 6 228 063529

2. Systematic Effects in Extracting a ``Gamma-Ray Haze" from Spatial Templates
Tim Linden, Stefano Profumo
The Astrophysical Journal Letters, 714 2 228

1. Probing Electron-Capture Supernovae: X-Ray Binaries in Starbursts
Tim Linden, Jeremy Sepinsky, Vicky Kalogera, Chris Belczynski
The Astrophysical Journal, 699 2 1573 (2009)



Tim Linden

Assistant Professor, Stockholm University

linden@fysik.su.se